Sums of two relatively prime k-th powers.

Roger C. Baker (Provo, UT)

§1 Introduction.

Let k be a natural number, k& > 3. Let Vi(x) be the number of solutions
(u,v) in Z? of
ul* + o] <z, (wv) =1
and let
Eip(z) = Vi(z) — e,

where ¢, = %, be the error term in the asymptotic formula for Vi (z).

Recent progress in estimating Ej(x) has been conditional on the Riemann
hypothesis. The best currently known result for F3(x) under the Riemann
hypothesis is

(1.1) Es(z) = O(z%7)

for every € > 0, where 03 = 9581/36864 = 0.2599 ... (Baker [2]).
Although I cannot improve (1.1) at present, I shall show that it can be
proved without the full strength of the Riemann hypothesis.

Theorem 1 Suppose that ((s) has no zero with real part greater than

12305 — 30
= ——— =0.5802....
7%= 7906, — 20
Then (1.1) holds.

For Ey(x), we have the bound

1
(1.2) Ey(z) = O(2°%), g = % = 0.2089...



under the Riemann hypothesis. This result is given in Zhai [18]. (Earlier
papers on Ej(z) are listed in [18].) It is claimed by Zhai and Cao [20] that
(1.2) holds with g replaced by 37/184 = 0.2010..., but the proof contains
an error. On page 167 of [20], it is shown that

7
I_€E4(IL‘) < Z x”]j7
J=1

where the 7); are given explicitly and 7, = 37/184. However, n; = 0.2096.. . .,
so the result that ensues is weaker than (1.2).
In the present paper I shall obtain

(1.3) Ey(z) = O(2%%)
under the Riemann hypothesis, where
7801
0y = ——=0.2073....
= 57616~ 0207

As above, I can reach the same result with a narrower zero-free strip.
Theorem 2 We have (1.3) for every ¢ > 0, provided that ((s) has no zero
with real part greater than

3204, — 5

P4

It is of interest to examine the mean square of Ej(x). The objective here
is to prove a result of the form

X
(1.4) / Ek(x)2dg; = dk)(lﬂ/kf?/k2 + O(X1+2/k72/k2—17)
0

for a positive constant n. Here

with

, _SU(/R) (kN 3 A p——
= (%) 7€k:Z Zu(d)d n :



The asymptotic formula (1.4) was obtained by Zhai [19] for £ > 6, and
Zhai and Cao [20] for £ = 5, under the Riemann hypothesis, with an explicitly
given n = n(k). In the present paper I fill in the missing cases k = 3,4, and
as above, assume only a narrower zero-free strip.

Theorem 3 Suppose that ((s) has no zero with real part greater than x,
where x < 1 —1/k. Then the asymptotic formula (1.4) holds with a positive
constant n = n(x, k).

The proof permits the calculation of a value for n(x, k). I leave some of
the details of this calculation to the interested reader. The improvement over
the earlier results stems from a relatively simple tool (Lemma 7 below).

Let r¢(n) denote the number of representations of the positive integer n
in the form

n=|ul"+ ¥, (u,v) € Z>
The Dirichlet series

e}

Zi(s) = Z Tkrf?)

is known to have an extension to a function analytic in
Res > 1/k — 1/k?,

except for a simple pole at s = 2/k; see, for example, Zhai [19]. To obtain
our theorems, we need to study the mean value

2T
My(0,T) = / Zu(o + it)2dt.
T

I shall show that
My (o, T) < T

for 0 > 1/k —1/k*+e€. This is used in the proof of Theorem 3. The stronger
estimate

(1.5) M(0,T) < T

seems inaccessible without increasing o substantially. For Theorems 1 and
2, we need o as small as possible in (1.5) to narrow our zero-free strip. Zhai

[19] obtains (1.5) with 0 = 2 — 5.



Theorem 4 The bound (1.5) holds provided that
0>2/5(k=3), o0>3/2k—1/k* (k=4,5,...).

We isolate as a theorem a result on the mean values of partial sums of

i re(n)

n=1

Theorem 5 Let 0 > 2/5 (k=3), 0 > (4k —4)/k(3k —2) (k> 4). Let

4
azm&x(E—Qa, 3—20k>.

Suppose that X > 1 and X* <T. Then
2T Z ’I“k(TL)
T na+it

n<X

This result is used in the proof of Theorem 4.

Most of the estimates for exponential sums and integrals used below can
be traced back to the ideas of van der Corput. However, the paper of Robert
and Sargos [12] not only plays an important role in a result from [2] re-used
here, but is used afresh. In particular, an exponential sum estimate based
on counting solutions of

2
dt < T,

hd Vil 1/q hd YA 1/q
(hi +£1) _(2+2) <A,

ni no

in the proof of Theorem 1, depends on [12].

Constants implicit in the ‘O’ and ‘<’ notations may depend (unless oth-
erwise stated) on k and €; other dependencies are made explicit where they
occur. Let C'(k) be a sufficiently large positive constant depending on k. We
write A < B for A < B < A. The notation ‘n —a ~ N’ (where n is an
integer variable and «a is fixed) means N < n —a < 2N. We write e(z) for
eQm’z.

I would like to acknowledge the friendly hospitality of the Department
of Mathematics, University of Florida, where much of the work was accom-
plished.



§2 Preliminary results

Let us write ¥(w) = w — [w] — 1/2, with [...] the integer part function. The
nice paper of Kiihleitner [11] is a helpful source for the present topic. We
find there the formula

(2.1) Tp(z) = Apa®* + @y (2292 *= V% 1 P (a*) + By(x)

for the summatory function Ty(x) = > rg(n). Here Ay = %,

n<x

Dy (u) = Z m 1k cos 9 (mum -4 (1 n E)) ’

m=1

(2.2) Pilu)=-8 Y (W —nk)),

2—1/ku1/2gn§u1/2

and By (z) = O(1).
Kuba [10] has shown that

(2.3) Py(u) = O(u®*/73%e),

Presumably this could be sharpened by a careful application of the recent
work of Huxley [7] within the argument of [10]. Kiihleitner [11] gives an
asymptotic formula for the mean value of Py (u),

X
(2.4) / Py(u)du = CpX?? + O(X3/27%)
0

where C} and 9§, are positive numbers given explicitly.
For u in a range [U,2U], U large and positive, Kiihleitner splits up the
interval of summation in (2.2) using subintervals [V,, N,.1], where
w2
r
(1 + 2—rq)1/k )

Here ¢ = k/(k — 1) and R is the least integer such that

N, = N,(u) = =0,1,...,R.

Vu— Ng <1 forue[U2U].
It is easy to see that

Nyi1 — N, = O(UY?2779),

5



(2.5) 2R = 712 R=0O(logl),

and that
R Nrya

(2.6) Py(u) = =8> Y 4 ((u* = n*)'/*) + O(log U).
r=0 n=N,

There are two well-known approximations to 1. The first is elementary

(Jones [9]):

@2.7) /D 1

The second, due to Vaaler [15], is likewise important in the present paper:

2
dw < HL.

vw)+ G(Zw)

0<|h|<H

(2.8) Yw)— D ape(hw)| < B(w),
0<|h|<H
where B(w) = > bye(hw) is a non-negative trigonometric polynomial, and
h<H
(2.9) < ! by < !
: a — —.
h h s Vh H

(The aj, and b, are given explicitly by Vaaler. See also the appendix to
[3].) It is worth noting that (2.8), (2.9) are valid even when H < 1, since

[h(w)] < 1/2.
Thus for U <u <2U,and H, > 1 (0 <r < R)

Nr+1

(2.10) Pr.(u) + 82 Z ap, Z e (h(uk/2 — nk)l/k)

r=0 0<|h|<H, n=Nr

Nr+1

< Z Z by, Z e (h(uk/2 - nk)l/k) + C(k)logU.

r=0 |h|<H, n=N,

Moreover, the van der Corput B-process yields

o« e(~1/8)

(2.11) Ze(h(“k/2 —nk)k) = T —1 ha® ZH (hm)~19/2 %

n=N, melh2r h2r+1]

X |(h,m)| =T 2e(—u"2 |(h,m)]) + O(log(|AIU + 2)).



Here and subsequently;,
|(hym)| = (|p|* + [m])"/1,

and }_" indicates that the first and last terms are weighted with a factor
1/2. See Kiihleitner [11] for more details.

It is convenient to write Ay(z) = Ty(x) — Apz?*.

For y > 1, let f(y, s) denote the meromorphic function

1 —s
1w:9) = 73y > un)~

n<y

Lemma 1 Let X > 1. The function Zy(s) has a meromorphic continuation

to the region

1 1
R - =
es>k 12

given by

Proof. See, for example, the proof of Lemma 3.1 of Zhai [19].

Lemma 2 Lety > 1. For a suitable positive constant C = C(k), we have

Ei(z) = Zu(d)Ak (%) + 1 /}\)\ch [y, ks)Zi(s) %s ds+ O(1)

211 ;
<y —ixC

whenever%—k%—i—egz\gg—e.

Proof. This can easily be adapted from the proof of Lemma 19 of [2], for
example.

Lemma 3 Let € > 0. Suppose that ((s) has no zero with Res > 6, where
$ <0 <1—c. Then((s) and((s)~" are O(t°) fors = o+it, t > 2, 0 > O+e.

Proof. In view of results in Titchmarsh [14], Chapter 5, we suppose that
o < 1. Following Titchmarsh [14], §14.2, we apply the Borel-Carathéodory
theorem ([13], §5.5) to the function log ((z) and the circles with center 2 + it



and radii 2 — 6 — g, 2—60—06, where 0 < 6 < 1—¢€. On the larger circle,

writing By, Bs, ... for absolute constants,

Re(log ((z)) = log |((2)| < Bilogt.
Hence, on the smaller circle,
4 — 20 — 26 4—20—30/2

|log ((2)] < 572 By logt + 572 |log ((2 + it)|
< By tlogt.
In particular, we find that
(2.12) |log ((o +it)| < Byd 'logt.

Now let oy = €3 and § = €%, and apply Hadamard’s three-circles theorem
([13], §5.3) to circles of center oy + it and radii ry < 19 < 73,

7"120'1—1—(5, 9 =01 — 0, ’1"3:0'1—9—(5.

If the maxima of |log((z)| on the respective circles are My, My, Ms, we
obtain
My < MI=aM2,

where

14+0—0
_logry/ry log (1 + 01—1—5>
log rs/r log <1 418 )

o1—1-0
l1—0c+9¢ _
:ﬁ‘i‘O(Ull)
_1-0+0(&)

1—46 '

The last two implied constants are absolute.
By (2.12), M3 < Byd~'logt, and it is easy to show (see [14], §14.2) that
M, < Bs6~!. Since o + it is on the middle circle,

1-a a
|log ((0 + it)| < <%) (Bﬂ;gt)

< C(é) (log t)(lfa+e/2)/(179)_

This is stronger than the required bound.
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Lemma 4 Suppose that ((s) has no zero with Re s > 0, where % <0< 1l—e.
Then

(2.13) fly,s) = Oy" 7 t[)
fory>1,s=oc+it,0+e<o <k, |t| >2.
Proof. Tt suffices to prove (2.13) when y is half an odd integer. In Lemma

3.12 of [14], take a,, = u(n), f(s) = %, ¢ = 2. We obtain

2+iT w 2
ML/ ;x_dww(y_)
2

— 2w oy C(sHw) w T

for T > 0. Take T = y**2, so that

2

<

=0(y").

S|

We have

2+iT 1 yw
2.14 / — Z—dw
( ) o C(s+w) w

9+§—U+iT 2—iT 24T 1 w
_ )
= - + — —dw
+5—o—iT 0+5—o—iT  JO+s—otiT ((s+w) w

We may now apply Lemma 3. The horizontal integrals on the right-hand

side of (2.14) are
2
O T_He/ yidu | = O(T~1¢?)
0+5—o

=0@").

The vertical integral is

T
0 (s [ @) = o),

=T

The lemma follows on combining these estimates.



Lemma 5 Let A >0, A< B<2A, C>2 C<D<2C. Let f be a
bounded measurable function on [A, B]. Then

/CD

Proof. We have

/CD

2

B
x)z" dw dt<<AlogC’/ |f(z)]*da.
A

2
dt

B B DIV
= / / f(@1) f(x2) / (—1) dt dx; dxs
A JA C T2
(by Fubini’s theorem)

1
// (| f (1) ‘2+]f(x2)|)m1n( \logxl/x2|>dx1dx2

1
=2 2/ mm( ,—)dw dxy.
[t | ogan/ml ) 72401

In the inner integral, substitute v = x;/x9; then |logv| < |v — 1|, so that

B 1 2 1
/ min (C’, —) dze K A/ min (C, —) dv
A | log 21/ 1 v —1]

< Alog C.

x)z'dr

The lemma follows at once.
Lemma 6 For 1/k—1/k*+e<oc<1andT > 2,
My (0, T) < T?logT.

Proof. By Lemma 1 with X =1, s=0+1t, T <t < 2T,

Zi(5) :s/loo Ae@) ko).

wo’+zt+1

10



Hence Cauchy’s inequality yields
2T | ©© 27 A 2

Z / k(W) dw gt
T ‘= 9i—1 w0'+it+1

M(0,T) < T+T2/

2T 00 00 27 2
o . Ak(w)d
2 2 2 W
<<T+T/T (Eﬁ ) > /2 i
j=1 j=1

j—1

Since .
Ak(w) < wl/kfl/k

from (2.1), (2.3), we find that

27
/ |Ag(w)? dw < 2-9(1+e).
2

i1 w2o+2

Applying Lemma 5,

dt < 277¢1logT

. 2
oT | p2i
Ag(w)
v | fy woitH

My(o,T) < T + T? <Z j22—f6> logT < T?logT.

Jj=1

and

Lemma 7 Let D > C > 2, B> A > 1 and suppose that g(t) is a bounded
measurable function on [C, D]. Then

/AB /D g(t)x"dt

c
Proof. This is a slight variant of Harman [4], Lemma 9.1.

2 D
dr < BlogD/ lg(t)|?dL.
C

Lemma 8 Let F', G be real differentiable functions on [a,b] such that G/F’
is monotonic and either F'/G > M >0, or F'/G < —M < 0. Then

4

b
F@de) < —.
/a G(z)e | < o7

11



Proof. This is Lemma 4.3 of [14].

Lemma 9 Let F' be a real differentiable function in [a,b], such that F' is
monotonic and 0 < M < |F'| <1—¢€. Then

a<n<b

Proof. This result is known as the Kusmin-Landau theorem. It is a conse-
quence of Lemma 8 in conjunction with Lemma 4.8 of [14]; there is a different
proof in [3].

For H>1, K>1,P>1,Q > 1 and a given quadruple of real numbers
a = (a1, as,as,ay), let us write

N<a’ H? K? P’Q7A)

for the number of quadruples (mq, mg, m3, my) with my ~ H, my ~ PH,
m3 ~ K, my ~ QK,

laymi + aomd + azmi + aymi| < A(PH)%
We write more succinctly
N(N,A)=N((1,1,-1—1),N,N,1,1,A).

Lemma 10 Suppose that 0 < ¢; < |aj| < ¢ (j = 1,...,4) and c;PH <
QK < cyPH. Then

N(a,H K,P,Q,A) < (PH) (PH* + AP3H4)1/2(QK2 i AQ3K4)1/2.
Here and in the proof, the implied constants depend on ¢; and c¢,.

Proof. Let My =H, My =PH, M3 =K, My = QK, and

Sj(u) = Z e(um?).

mn~M;
By a slight variant of Lemma 2.1 of [16],

1/2A(PH)4

) 4
N(a H.K.P.Q.8) < @APH)" | TT15)(ay0)] du.
0 iy

12



By Holder’s inequality

A(PH)1/2 4 4 1/2A(PH)d 1/4
/0 T115; (0w du < [ ( / |Sj<aju>|4du>

j=1 j=1

1/4

4 aj/2A(PH)Y
<II(/ 1)) du )
0

Jj=1

so that

4 co /20 (PH) 1/4
(2.15) N(a,H K, P,Q,A) <[] (A(PH)q / ]Sj(u)\4du> .
0

j=1

Again by Lemma 2.1 of [16],

cs/2A(PH)
(2.16) A(PH)’ /0 19 (w)|* du

<<N(Mj, M) .

CQqu

We now apply the inequality
N(Mj, n]) < Mj2+€ + M;-H—e?’]j,

which is Theorem 2 of Robert and Sargos [12]. We take

AA(PH)1
2
Thus, since PH < QK,
q
N (Mbﬂ) < H2+e +H4+6(P‘]A)’
C2M1
A(PH)?
N (Mz, (—q)) < (PH)™ + (PH)™ A,
62M2
A(PH )4
N (Mg, (—q)) < K4 K*(Q1A)

13



and

A(PH)

CQMZ

N <M4, ) < (QK)* 4+ (QK)* eA.

Moreover,

((PH)? + (PH)*A)Y/4(H? + H*PIA)3

< (P2H4 + PYHSA + P4+qH8A2)i

< (P*H' + PHEAY)YA < (PH? + PPHA)Y2.
There is a similar bound

(QKY? + (QK)'A) /A (K*? + K'Qia)/t
< (QK? + Q*K*A)?,

so that (2.16) gives the desired bound for the right-hand side of (2.15).

Lemma 11 Let 1 < H < PH, N > 1. The number of solutions N' of

\(he, 0)|  |(hasby)||  APH
2.1 _
(2.17) . e

with H < h; <2H, PH < {; <2PH, N <n; < 2N is
O((PH)*(P*H*N?A + P*?H®N)).

Proof. Let d be an integer in [1,2N). We count the number of solutions
Nd of (217) with (nl,ng) = d. Write n; = k?jd, (k’l,kg) = 1, k’l S 2N/d,
ke < 2N/d.

First fix ki, ko. Then (2.17) implies

k
(2.18) |(h1,61)| —k—1|(h27€2)| < APH
2
and indeed
q q ki ! q q
2

14



By Lemma 10 the number of solutions hy, hs, ¢, {s of (2.19) is
< (PH)*(PH? + APH*).

Hence

d? + d?
On the other hand, if we fix hy, ¢1, hs, {s, then (2.18) implies
[(h1,61)] ks

‘|(h27f2)| ks
Since the numbers k; /ko are spaced at least d?/4N? apart, the number of
solutions of the last inequality is

N2?PH? AN?P3H*
Nd<<(PH)E/2( )

< 2A.

2

<+ L
Hence AN?
Nd<<P2H4< - +1)
and indeed
AN?P3H* . (N?PH?
Ny < (PH)* <T+mm< = ,P2H4)>
[ AN2P3HY  (N2PH?\ '
< (PH) ( = +( = ) (PH"? ).

The lemma follows on summing this bound over d.

Lemma 12 Let f be a complez-valued function on [D,D’), where 2 < D <
D' < 2D. Suppose that 0 < U < DY?, B > 0, and

Z amz f(mn) < B

m~M n~N
D<mn<D’

whenever MN =< D, N > DU and |a,,| < 1. Suppose further that

Z amz b, f(mn) < B

mn~ M n~N
D<mn<D’

15



whenever MN < D, U < N < DY? and |a,,| <1, |b,| < 1. Then

> u(d)f(d) < BD".

D<d<D’

Proof. This is essentially Lemma 2(ii) of [2]. (The idea is much older; see
[4] for a broader discussion.)

Lemma 13 Let (k,\) be an exponent pair. Let o, 3 be constants, o # 0,
a<l, 6<0. Let X >0, M >1/2, N>1/2, MN < D, Ny = min(M, N),
L =log(D +2). Let |ay,| <1, |b,| <1, I, € (N,2N], and

B
S = ZamZe(zﬂ;]\Z),
Sy = Z amz b,e (ﬁ/[n;f\?:)

(i) We have
S, < L2{DN—1/2 + DX ! + (D4+4HX1+2HN—(1+2/4)Ng(k—ﬁ))l/(ﬁ—&-&{)}‘
(i) If N < M and X > D, we have
52 < L7/4<DN—1/2 + DM—1/4 + (D11+105X1+21~€N2(>\—l{))1/(144—12/{))'
The implied constants depend on «, (3, k and A.
Proof. See [2], Theorems 4 and 5.

Lemma 14 Let «, 3 be real constants with af(a—1)(8 —1) #0. Let K, A,
X, M, N, L, Sy be as in Lemma 13. Then

Sy < LA{(XZH D SHI08 NN/ (124168) | x1/6 ) 2/3 £3/440/(12+126)
+ (XM3N4)1/5 + (XM7N10>1/11 + M2/3N11/12+/\/(12+12n)
+ MN1/2 + (X—1M14N23>1/22 + X_l/QMN}.

16



Proof. At the cost of a factor L, we can remove the condition D < mn < D’
from the sum Sy. See [4], pp. 49-50. Now the result follows at once from
Theorem 2 of [17].

We recall some facts about Riemann-Stieltjes integrals fab ft)da(t), as
presented in Apostol [1], Chapter 9. Sometimes these integrals do not receive
enough care in the number theory literature. The functions f and a are
assumed to be real-valued and bounded on [a,b]. We must be careful to
avoid both a and f being discontinuous from (e.g.) the left at any point,
since then fabf(t)d a(t) may not exist (see [1], Theorem 9.28). If we begin
with f a function of bounded variation continuous from the left, and «a the
sum of continuous function and a step function continuous from the right,

then I = fabf(t)da(t) does exist. Moreover, J = f: a(t)d f(t) exists and

I+J = f(b)a(b) — f(a)a(a)

([1], Theorems 9.2, 9.6, 9.11 and 9.21). Moreover, if it happens that f is
continuously differentiable on [a, b], then

[ atwaro = [“asoa

([1], Theorem 9.8). We now derive some basic inequalities for the Riemann-
Stieltjes integrals [ ;X f(t)dAg(t) that we shall encounter. Here X > 1. From
the definition, Ag(t) = Ty(t) — Axt** is the sum of a continuous function
and a step function continuous from the right.

Lemma 15 Let f(t), g(t) be real functions of bounded variation continuous
from the left on [X,2X], |f(t)] < g(t) (t € [X,2X]). Then

(i) We have
2X
|10 anuo < X,
X
(i) We have

2X 2X

f(t)dA(t) < / g(t) t¥*dt +

X X X

/ = dAk(t)' |

(1) If f is continuously differentiable on [X,2X], then

2X ) 2X
[ swanie < il | [ f’(tmk(wdt\.
X X

17



Here [|fllo = sup [f(t)].
X<t<2X

Proof. (i) We have

(2.20) / f(t)dAk(t) / F()d(At**) + /sz F(O)dTi ().

and ([1], Theorem 9.23)

ARt?) | < I Fllso Ar((2X)* — X3/%),

t)d(ﬂ(t))\ < I (TL(2X) — Tu(X)).

Now (i) follows from simple bounds for the expressions used to bound the
two integrals.

(ii) From (2.20), and [1], Theorem 9.22,

2X 2A
/ f(t)dAL() ‘ k/ FOR 10| +

< 2A;

/ g(dTi(t)

2X
< 2 " g / g(OdTH(1)
X X
2X 2X
_ A4 g(t)tQ/k_ldt—i—/ (t)dA(t)
k X X

(iii) We have
2X

_ /X 7 AL ()t

X

/X FOAAL(E) = A1) £(2)

2X

o] < 18l I+ || - O

2X
& [ flloo X VAR 4 / Ak<t>f'<t>dt‘ ‘
X

18



§3 Proof of Theorem 5.

By a splitting-up argument and Minkowski’s inequality, it suffices to show
that

(3.1) /T Y

The left-hand side of (3.1) is

(3.2) > % T’“n@ "”;2@ / (m/n)dt

n~X m~X
1
Z re(m) min (T, )
me logm/n

rr(n)
<y
n~X n<m<X

The contribution to the last double sum in (2) from m = n is

2
dt < T2,

5 )

n~X

since 74(n) < nf and Y "Z_gan) < X2/h=20
n~X
By a further splitting-up argument, it suffices to show that the contribu-

tion to the last double sum in (3.2) from n ~ X, m —n ~ Y is O(T*/3) for
% <Y < X. Moreover, form —n ~Y,

m m—-—n
log — =
n

~
—~

| <

n
Thus we must show that
X
—20 __: - 1+€/3
X ~*? min (T, Y> T;(rk(n) m;y re(m) < T°77,

Now

Z rr(m) = Ap((n+2Y)¥* — (n + Y)2/*)

m—n~Y

+Ar(n+2Y) — Ar(n+Y),
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and

X
X 27 min <T, ?) Z rr(n)((n 4 2Y)¥*F — (n 4+ Y)¥k)
n~X
< X—Zo‘-i-ly—l X X2/k i YXZ/k—l < T,

since
X4/k—20 <T

Accordingly, it suffices to show that

(3:3) > () (G(n+2Y) = Gn+Y)) < TX* (1 + %)

where G(w) = w"/* V¥ (w¥*) + By(w), and that

(3.4) > k() (Pel(n+2Y)*%) = Pe(n +Y)**)

n~X
TY
TE/3X20’ 1 i I
riar (14 57)

Let L = Y~' X% Then in [X,3X],
G(w) = H(w) + O(X VeV [=1/k)

with

_1/k2 1 1 1
H(w) = ! FYE Y 2t cos 2 (ml/’“—z (HE))'

<L

(Possibly H(w) = 0.) For w € [X,2X],

H'(w) < X 2/k=1/k*=1 ZE—I/k & XYY 111k
(<L

G(W + 2y) . G(W + Y) < X2/k‘—1/k‘2—1L1—1/kY + Xl/k—l/kQL—l/k‘
< YVE

Hence the left-hand side of (3.3) is

< X?/kyl/k

20



If Y < X/T, then
XQ/kyl/k’ <<X3/1<:T—1/k <<X20,

since X372* <T. If Y > X/T, then

2/ky 1/k 2/k X\ e 3/k—1pl—1/k 20—1
XY P <« X T Y=YX T <LYTX

for the same reason. This proves (3.3).
Let v*(u) = ¢(u) for w € Z, ¥*(u) = 1/2 for u € Z. Then ¢* is of
bounded variation and continuous from the left, as is

Pi(u) = -8 > U ((uh? = k)R,
271/ku1/2§n§u1/2
We observe that
P (w?*) — P(w¥F) < X¢ (w € [X,2X])

since w — n* = m*, (m an integer) for O(X¢) values of n in [27V/*wW/F W1/k],
Since o > 1/k, it suffices to prove a variant of (3.4) with Py replaced by P};

that is, to prove
2X
| B+ 2 - B+ VT)

X
TY
T6/3X20 1 i I
< ( n X)

21



Moreover,

X

X+2Y

2X+Y
- / P () (w

X+Y

2X42Y
- %{ | R

X+2Y

X+2Y
- / P () (w

X+Y

X+2Y
4 / P () (w

X+Y

/2X{PE(<w +2V)*0) = Pi((w + Y)*") d(Aw®)

2A 2X+2Y
_ 2 / P ) (w — 2V )

— Y)2/k1dw}

2y)2/k—1 . (w . Y)Z/k—l}dw

o Y)2/k—1dw

— Y)Y dw.

In the last expression, the first integral is estimated using (2.3) as

< X2/3kYX2/k:—1 < )(20’—1{27}/7

since

X4/k;—20 <T.

The last two integrals are also

< X2/3kYX2/k—1 < X2U_1TY

Thus it remains to prove

(3.5)

for Y1 =Y, 2Y. We may suppose that

(3.6)

22

2X TY
/ P (w4 Y1)dAL(w) < TBX% (1—|——)

Y < X148k,
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For in the contrary case, the left-hand side of (3.5) can be estimated by
Lemma 15(i) as

< X8/3k: < X20—1+4/k:—20'y
< X*¥iry,

since X4/k=20 <
Write w1 = w+ Y; and H, = X3*-202-7¢_ We observe that, for w €
[X,2X],

37 (P +8dY. Y 3 e(h(w, — n*)'/k)

r=0 O<hSHr N, (wi/*)<n<Npr (07/F)

<> Yo > e(h(wy —n*)'")

r=0 RS e N (@7 ) <n< Ny (wi )

+ C(k)(log 2T)?,

with R = O(log 2T"). This follows from (2.10), (2.11) if wf/k is not an integer,
and by a limiting argument otherwise. Hence Lemma 15 (ii) yields

(3.8)

/MﬁwWme>

* R 2X
_ —8ZO/X > > e(h(wr —n")Y*)dA(w)

0<|h|<Hr Nr(wf/k)SnSNrJrl(wQ/k)
e <

; /X > b > e(h(wy — nF)Y*)dAL(w)
12

IhI<Hr N (@) <Ny (w2/F)

/QX Z bh Z 6<h(w1 _ nk)l/k)wg/k_ldw

X
PI<Hr N (@ ") <n<Npga (wi%)

2x
+/ (10gT)3w2/k_1dw>.

+ / (log T)*d A (w)

X X
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The last two O-terms in (3.8) contribute
O(X**(log2T)*) = O(X*)
by Lemma 15 (i). The contributions from by in the sums over h are both

R xS/k2—rq B .
) i = O0(X* log 2T
r=0 r

from the choice of H,.
Fix a value of r, 0 < r < R, and write P = 2". After a splitting-up
argument, we see that it suffices to prove

(3.9) H /X > o > e(h(wy — n*)YFYdAL(w)

h~H o N (%) <n< Ny (02/F)
TY
Te/4 20 1
< X + ba

and

(3.10) H™ / Z Ch, Z e(h(wl _ nk)l/k)d(uﬂ/k)

h~H N, ( 2/k ')SnSNT+1(w2/k)
TY
Te/4 20 1
< X + X

whenever

1
5 SH< X3k=20pa e < 1.

Let a = (2k —1)/(2k —2). Using (2.11), we write the integrands in (3.9),
(3.10) as

PPN N b(hym)e(w!* |(h,m)]) + O(log 2T),

h~H me[hP,2hP]

with b(h,m) < 1. We have already shown that the term O(log 2T") gives rise
to an acceptable error. This reduces our task to showing that

G11) Por2S S bhm) /X W (VR (B ) ) AR (w)

h~H me[hP,2hP)]
TY
T€/4X2Cf 1 -
<riae (1)
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and

2X
(312) PH2Y" > b(h,m) / wi e(wy ™ (hy m)|)w* duw
X

h~H me[hP2hP]
TY
Te/4x2a 1 i
< ( n X)

The bound (3.12) gives no trouble. The integrals are
O(XP (| (h,m) X)) = O(X¥/(P )™
from Lemma 8. Thus the left-hand side of (3.12) is
< POV X3P < XB/P < X2

For the integrals in (3.11), we use Lemma 15 (iii):

/X e(w1”*|(h, m) |l dAg(w)

< X3/2k—1/k2 +

2X
/X WL VR () ) A () oo

_|_

2X
/X W () () (hy m) ) A (o) dos

The contribution of the first two terms in this bound to the left-hand side of
(3.11) is

< PlfaH1/2X3/2k71/k2
< X3/2k:70+3/2k71/k2 < X%,
Recalling (2.1) once more, it remains to show that

(3.13)

pl-afr- 1/22 Z

h~H me&[hP,2hP)]

2X
/ w0 e |y m) et E T By () duo
X

TY
< T6/4X20 (1 + _)

X
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and

(3.14) PUeHTVEY "N

h~H me[hP,2hP]

2X
/X STl F | (h,m)|) P(w?* ) dow

TY
Te/4X2U 1 ).
rier (14 57)

For (3.13), we have the bound
2X ,
/X wgg/%)*lwl/k’l/k e(wi/k\(h, m)| + ﬁwl/k)dw

< X¥E | (h,m) ||
unless
Y
(3.15) [¢ — |(h,m)|| <C(l€)YPH+1.

Now
> VR — | (hym)|| Tt < (PH) !
le—|(h;m)||>C(k) % PH+1

For the contribution from ¢ — |(h,m)| > PH and (¢ < ‘(h—Qm)' is clearly
O((PH)™"). The remaining ¢ contribute

o( > <PH>—1—1/k<f'>—1> = o(PH)™).

1<V¢/<PH

We also observe that

Z eflfl/k

[e=|(h,m)||<C(k) X PH+1
ok (Y
< (PH) X PH+1).
Combining these estimates, we see that the integral in (3.13) is

< (PH)—1X3/2k—1/k2 + (PH)—I—I/k <§ PH + 1) X5/2k_1/k2,
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The left-hand side of (3.13) is thus
< H1/2X3/2k71/k2 + (PH)3/271/kX5/2k71/k271Y + H1/271/kX5/2k71/k2.

Now
/2 X 3/2k—1/k? < X 3/2k—0+3/2k—1/k? < X%

since o > 1/k;
Hl/Q—l/kX5/2k:—1/k:2 < X(1/2—1/k)(3/k—2a)+5/2k—1/k2

< X20‘
since o > (4k — 4)/(3k* — 2k). Finally,
(PH)3/2—1/kX5/2k—1/k2—1Y < X(3/2—1/lc)(3/k—20)+5/2k:—1/k:2—1Y

< XZUflTY

because
X(3/2—1/k)(3/k—20)+5/2k—1/k2—20 _ X?/k—4/k2—cr(5—2/k)

< X4/k72cr <T.

<This is a consequence of the obvious inequality

3 2).3_2
“UTk) TR
This establishes (3.13).

Turning to (3.14), another application of (2.10) gives
(3.16)

2X
/X WP (R e(w)®| (B, m) ) dw

R 2X Nyp1(w?/F)
=8 > / GPTEST e (w — )Y | () ) dw
s=0 0<|h1|<Ks X n=N;(w?/k)
R NS+1(w2/k)

2X
+0 Z/ wf/%_l Z bn, Z e(hy(w — n®)V*)dw
s=0 /X

|| <K n=N;(w2/k)

+ O(X3/%(log 2T)%).

27



Here
Ks _ Pl—a2—qu3/2X5/2k—20"

so that
2X Nst1 5/2ko—s
Xo/erQ—sa
k_
/X wi’/Q 1b0 E ldw < T
n=Ng

< P“_lH_?’/QXQ".

Thus the terms arising from by in (3.16) contribute to the left-hand side of
(3.14) an amount

< PlfaHS/QPalef?)/QXQa' < XQO'.

The contribution arising from the term O(X?3/%¢(log27T)%) in (3.16) is

(3.17) O(PH?X3/?*(log 2T)%) = O(X3/2B/k=20)+3/2k (195 9T)3)
= O(X* (log 2T)°),
since dk—4 6 2
> > (k>4 > 2 (k=23).
“Z3m p g k=h o=z (k=3

For the remaining terms on the right-hand side of (3.16), select a partic-
ular s, write @ = 2%, and apply (2.11) to the sum over n, with s in place of r.
Since the term O(log(|h| U + 2)) leads to a further error O(X?3/#(log 2T")?),
our task now reduces to showing that

(3.18)

PR S S ST ()

h~H Ph<m<2Ph hi~K Qh1<mi<2Qh1

Y
T€/5X20' 1 i
<rrar (14 57)

Here 1 < K < K,

2X
I§<h7m7 h17 ml) - /

/PN ([, )| w0+ 8] (y )| w!*) do,
X
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and 0 may be 0, 1 or —1.
We first consider (3.18) when either § = 0 or 1, or QK > C(k)PH. In
this case

d
- (|0, m)| @+ [ (h,m)] M) > QR XV,

Is(h,m, hy,my) < XPRHQK XY = XYHQK) ™
from Lemma 8. The left-hand side of (3.18) is

< PQfaH?;/QQlfaKI/QXl/k(QK)fl
< PTY2(PH?(QK)Y2XV* « PHXY*F < X%

as we saw in (3.17). Similarly, when PH > C(k)QK we have
]—l(hJ m, hl) ml) < Xl/k(P‘H)_17
and the left-hand side of (3.18) is

< P2—aH3/2Q1—aK1/2X1/k(PH)—I
< (PH)Y*QK)'? XV « PHXY* < X%

as we saw in (3.17).
For the case 0 = —1, QK =< PH, we observe that

d
(3.19) dw (Jhym)| @y = | (R, ma)| 0Y*1)

! PHY
£ (0 m)| = [ m) |+ 0 (T “’”’”) .

Consider the contribution to (3.18) from quadruples with
C(k)Y
(3.20) ( _(X—)) PH < ||(h,m)| — |(h1,m1)|| < 2APH.

where A runs over the O(log 27") values

Ck)Y

A=2'
X

,t=0,1,..., A< 1.
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It suffices to show that for each A, these quadruples contribute O (T </6 X2 (1 + 7;(—Y))
to the left-hand side of (3.18). From Lemma 10, the number of quadruples
satisfying (3.20) is

< TY(PH? + APPH")'?(QK* + AQ K*)'/.
We now consider three cases.
Case 1. We have A < (PH)™2
In this case the number of quadruples satisfying (3.20) is
< PY?HQY?K < (PH)*(PQ)~'/2.

Estimating the integral trivially, the contribution to the left-hand side of
(3.18) is
< PlfanaHfl/QKfB/Z(PH>2(PQ)71/2X2/1€
< (PHP(QK) 312Xk « XF
< XQU.
Case 2. We have A > (PH) % and t = 0, that is, A = C(k)Y X .
In this case the number of quadruples satisfying (3.20) is
< TS(APPHYY2(AQP K1)/
< T/A(PH)(PQ)~?
< TY XY PH)Y(PQ)~'/2
Estimating the integral trivially, the contribution to the left-hand side of
(3.18) is
< T€/6PlfanaH71/2K73/2YXfl(PH>4(PQ)71/2X2/I€
< T6/6(PH>7/2(QK)73/2YX2/I€71
< T6/6(PH>2YX2/]€—1 < T€/6X8/k—40'—1Y
< XQU—IYTI—G/G

since
XS/k—EiJ < X4/k—2z7 <T
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Case 3. A > (PH) 2 and t > 1, so that A > 2C(k)Y/X.
We can now infer from (3.19) that the quadruples satisfying (3.20) have

I_l(h, m, h’l; ml) <K X2/k_1(APHX1/k_1)_1
< XYE(PH)'A.

The number of quadruples is again < T/SA(PH)*(PQ)~'/2. Thus the con-
tribution to the left-hand side of (3.18) is

< Te/GPI—QQ—aH—I/QK—3/2A(PH)4(PQ)—1/2X1/k(PH)—IA—I
< TE/GP—l(PH)S/Q(QK)—S/QXl/k‘
<K TPHXYF < TX?

from (3.17). This completes the proof of Theorem 5.

§4 Proof of Theorem 4.

Let g be fixed, 2 <09 <% (k=3), 5 — 5 <00 < 5 (k=4,5...). Define
the positive number X by X 200 =T Tt is 1mmed1ate from Lemma 1 that

(4.1) My(00, T) < Wy + T°Wy + T,

where

2T
_ ri(n)
wi= [

T p<x

2T 2
RAVI®)
W2 == /T /X W dw‘ dt.

We may apply Theorem 5 to Wi; the conditions

=3), 0o > (4k — 4)/(3k* — 2k),

2
> —
- 5
4
(% — 20’0, — 20’0]6) S 20’0
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are easily seen to be satisfied.
It follows that W < T'*¢. Recalling the decomposition of Ag(x) in (2.1),
we have only to show that

2

9T | oo 2/k
P
Wy = / / e ol ar < T e

T P wa1+zt

where 0y = 09+ 1 — 1/k + 1/k?, and
2T 00 2
F;
Wy = / / k(w> dw| dt < T,
T P% w0'2+zt

where oy = 09 + 1, Fp(w) = Py(w) + Bi(w*/?).
Crudely, we have

or | e 2o T R cos (2mnw!/F — 1 (14 1))
/

1 k 2
if we choose

dt

n>B
/ o1+t dw
X w1

< TB*Z/kaQLnJrQ < T*l

B =TFXFCEoHD,
After a splitting up of the sum

1 1
—-1-1/k 2 1/ _ = 1 -
g n cos(wnw 4( +k‘))’

n<B

we find that for some N, % < N < B, we have

/X N g(w)w ™

1 1
gw) =w" Z n~ 1k cos (27mw1/k ~1 (1 + E)) )

n~N

2T

(4.2) Wi < T + (log T)Z/ dt,

T

where

o0 o0

We decompose the integral / as Z / , where
X j=0 7 J()

J(j) = [X27, X271,
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We have

(4.3)

—it 1 —1-1/k — 1/k tlogw

gww Mdw| < = Z n w e | nw " — dw
I0) 2 bt JG) 2m
—i—l Z p ik / w™ e [ —nw/* — tlogw dw )| .
2 ; 2m
n~N J(5)
Let F(w) = nw'/* — 1%L and F(w) = —nw'/* — L2 We have

j T
|F](w)] > max (N(X2])1/k—1, )

X2
in (4.3). If
. T
(4.4) kTN (X20)VE > —
m
we have

|[F'(w)] > N(X27)/r
in (4.3), while if

. T
(4.5) 2kIN(X 2R < y
v

we have instead A
|F'(w)] > T(X29)7!

in (4.3).
We conclude from Lemma 8 that

(4.6) / glw)w tdw < N~1Vk (I X)—o1-1/k+1
J()
< N*l/kal(QjX)lfa'l

if (4.4) holds, while

(4.7) / g(w)w tdw < N~V (21 x)-
J(5)
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if (4.5) holds. There are only O(1) ‘exceptional’ values of j satisfying neither
(4.4) nor (4.5). For these j,

N(X2)Vk <.

(Of course, there are no exceptional j unless N < T X ~'/k)
If there are no exceptional j, then we can apply (4.6), (4.7) as follows:

ay [ sty
th)

2

dt

X

SIS
<[ %

Jj=1

/ g(w)w " dw
J(5)

<« T71x2 2 = prix—2o0—i—5),
Recalling (4.2), we obtain the bound
W3 <« T_l

using only the lower bound oy > % — k%
Suppose now that there are exceptional j. For some fixed j, satisfying

(4.9) N(X20)\/k < T,

we can modify the above calculation to obtain

(4.10) /T Y / h g(w)w *dw

X
2T
<</
T

2

dt

2

dt

[oon-sa

+ T—1X2—20'1 ]

Here J = J(jo).
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We now appeal to Lemma 5. We have

(4.11) /T " /J g(w)w " dw

< (X290)1 7271 Jog T /

2

dt

Zn 1=1/ke nwl/k) dw.

n~N

A change of variable shows that the integral on the right-hand side of (4.11)

is
(2J0+1X)1/k
/ 1
(2]0X 1/k

<< (QjOX)l—l/kN—(1+2/k) (QJQX)l/k

dv

E:nll/k ’fM)

n~N

by Parseval’s equality applied to subintervals of [(270 X)!/k (270+1 X)1/*] hav-
ing length 1. We conclude that

[ st

< N™UF2R (270 X)2 27 Jog T

2
dt

< N-(+2/R) (k p=ky2=201 150
by (4.9). This bound is
< N~OF2R)(Th =Rk 6e T < T og T
since 01 > 1+ 5-. Recalling (4.2), (4.10), we always have
Ws < T logT)3.
Now we have to show that
W, < T,

Arguing as in (4.8), it suffices to show that

2T F 2
(4.12) / / ’“<fz dw
GO
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Lemma 5 yields, for any measurable function F(w) such that

(4.13) /T "

E(w) < T% on [X27, X27H],

2
E
/ O'(Cii)t dw
J(j) W7

< (X29) 722 2 (log T)T/*
< <X2j>7200T6/3 < T*1+6/3272j00.

dt

Thus it suffices to show that

2
/2T / : <WQ/k_> dw
T J ()

w0'2+it
Define R as in Section 2 with U = (X27)¥/2. In view of (4.13) and the
decomposition (2.6), it suffices to show for a fixed r, 0 < r < R, that

/2T
T

Let H = H(T,r) be a positive integer, to be chosen below. Let

dt < T4 54,

2
dt < 7712574,

Nyt (w?/F)

/ w2 ¢((w _nk)l/k)dw
J()

n=N, (w2/*)

Niy1(w?/F)

J@= 3 w—nk)r,

n=N,(w?/F)

Nr+1(‘*}2/k)

1 e(h(w — nF)V/k

n=N,(w?/k) 0<|h|<H

It will suffice to show that

(4.14) /T "

and

(4.15) /T :

dt < T~1F</2j=1,

[ et - g
J(4)

2
dt < T2,

/ w‘”z_itg(w)dw
J(4)
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We begin with (4.14). Let P = 2". For n <

the indicator function of the interval

(X2)VE we write f,(w) for

I(n) = [n*(1+ (2P)7%), n*(1+ P~9)].
Let . ‘
Li(n) = [X27, X271 N I(n).
Now
2
1 h _ o K\1/k
/ Y((w — n*)VF) 4 — Z e(h(w hn) ) dw
Ii(n) T
1 hw) |
z/ kot p(w) + —— Y e(fn) dw
wk+nkel (n) ™ 0<|hl<H h
1 1 ()
, e(hw
< X2¥pa / Yw)+ 5= dw
0 2m 0<|h|<H h
< X2P9H!
by (2.7). (Note that the variable w introduced by the change of variable

satisfies w =< nP~9*.) Hence

| 17w - gl
J ()
{W

/Jm 2, hlw)
/ fulw

<(X29)1/k
< (X20)M*
V(ng)l/k
(by Cauchy’s inequality)

(X29)1/’“ >

=(X27)1/k Ii(n)

< (X2j)1+2/k‘P—QH—1.

k)l/k) N L Z e(h(w — n*)1/k)

}

2

dw

i n
0<|h|<H
2
1 e(h(w — n®)1/k)
1/k _
) )+27ri Z h
0<|h|<H
2
ko ky1/k
(w — b 1/k)+% Z e(h(w hn) ) do

1
0<|h|<H

37

dw



In view of Lemma 5, the left-hand side of (4.14) is

< (X 1o0gT [ ) —glepas
Ii(n

< (XQj)—200+2/k(10g T)P_qH_l < T7! log T 9—i(200-2/k)
if we now specify that
H = TX—200+2/kP—q _ X2/k;P—q‘

Turning to (4.15), it is sufficient to show for a fixed K, % < K < H, that

/2T
T

where « = 1 or —1 and

dt < 1’1714’6/3]'747

/ wigﬁaitg[((w)dw
J ()

Nyy1(w?/F)

gr(w) = e(h(w —n")'").

h~K =N, (w?/*)

Recalling (4.13), we can reduce this to showing that

/2T
T

2

/ PO 3270 Q) dw| dt < T34,
J(3)

Here
03202—1/2k5200+1—1/2]€

and

Gw)= Y blhm)e(w! |(h,m)))

(h,m)e&
with b(h,m) < 1,
E={(h,m): h~ K, Ph<m <2Ph}.
Compare the reduction of (3.10) to (3.11).

Arguing as in the discussion of W3, we find that after excluding O(1)
‘exceptional’ values of j for which

Cl(]{?)T < PK < Cg(l{?)T

(4.16) W W’
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(with ¢ (k) > 0) we have

1/k
[ lmit
J(j) w03+ont

< min ((X27)' 7o V(PR (X 29) s

for all (h,m) € &.
Since |£] < PK?, the ‘non-exceptional’ j satisfy

2T ) 2
—2a
(4.17) K~ / / e T

< PTK7T(PK?)? min((X27)> 2k 2 pm2 K2

dt

(X29)2-2082)
< P D) min((PK) 7T (X 29)*2/h20s pRT (X 27)*720%)
< (X27)202  T1p2000,

Now suppose that j satisfies (4.16). We have

(4. 18)
wos

/J(ﬁ
Z Z b(hy,m1) b h2am2)/ w e ((|(h1,m1)| - |(h2,m2)|)wl/k) dw
J(7)

(hl ml)Eg (h2 mz)Eg

min J\1-203 (X 27)1-202
< Z Zeg <<X2 ) H(h17m1)| _ |(h2,m2)||> ;

(h1,m1)€E (h2,m2)

2

G(w)

by Lemma 8.
We consider the contribution to the last sum from hy, mq, hs, mo satis-

fying
(4.19) APK — (X27)7VF < ||(hy,my)| — | (hay ma)|| < 2APK.
Here A runs over the numbers in (0, 3] of the form

A = (PK)~Y(Xx29)"Vkoh (h=0,1,...).

39



Clearly (4.19) implies
|hY +mi — hd —mi| < A(PK)%.
By Lemma 11, the number A of such quadruples satisfies
(4.20) N <« (PK)“*(PK?* + AP3K*).
The contribution of these quadruples to the last sum in (4.18) is

) X2j)1—202
PK €/b X 9J 1—20’3PK2 (
< PRy { (x2) 2

AP3K4}
= (PEK)P{(X2)' 7?7 PK? + (X2)' 272 PP P}

Summing over O(j + logT") values of A, we find that

/J(j)

Applying Lemma 5, and recalling (4.16), we have

2
/ G (w) o
J(j) w3 “+aat

< JT(X2 P3P+ (X220

2

G , :
(w) dw < jTe/4{(X2])1—203PK2 + (X2j)1—20’3P2K3}‘

w3

2T
(4.21) P K3 / dt
T

o« GT3{(X29)2-2osH1/k=1 4 (x9i)~200),
We recall that X?°° = T and that

2—-203+1/k=—200+2/k < 0.
Thus the left-hand side of (4.21) is

< jT_l+€/32_(200_2/k)j.

Combining this with (4.17), we see that the proof of (4.15) is complete. As
already noted before (4.14), this finishes the proof of Theorem 4.
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§5 Proof of Theorem 3.

It suffices to show that

2X
/ Ek(m)de = dk((2X)1+2/k—2/k2 _ X1—2/k:—2/k:2)
X

+ O(X1+2/k—2/k2—n)

for large X. We write (in this section only) || .. .|| for the L? norm on [X, 2.X].
We note that
IF +GI* = |IF|* + O FIIG])

if |G| = O(||F||). Accordingly it suffices to write Ej(x) in the form
and to show that
(5.2) HFHZ _ dk((QX)1+2/k72/k2 . X1+2/k72/k2)
+ O(X1+2/k72/k2—n),
and that each G satisfies
(5.3) IGS1[> = O(x+2/k=2/k2m),

Let A = 1/k — 1/k? + €. Let ¢ = ¢(x, k) be a small positive constant,
c < 1/(2k + 1), and let y = X°. By combining Lemma 2 with (2.1), we
obtain

Bylx) = cha/F Y7 () (d_/> + 2 MR, (7/)

d<y d<y
: .C
1 Atix

L L Py, k) Z(s) = ds + O(y).

27TZ A—izC
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Thus in (5.1), we may choose

1/k
c, L/ k=1/k? 1-1/k () lx _1 1
F(z) = E - E prEyc 27 y 1 1+ 2

<X d<y
2 d Vk 1 1
Gi(z) = da'/F1/k Zﬁ_l 1/kz dlllElzk 08 2 (Exd ! (1 N E))
>X d<y
=0(1),
22/k
d<y

iz s
Golw) = [ Fluks)Zul) s,
A—ixC S
Ga(z) = O(y).
Obviously Gy, Gy satisfy (5.3) for n < 1/k—1/k? —c. It remains to prove

(52), and (53) for GQ, G3.
We can dismiss G5 quickly. By Cauchy’s inequality, a change of variable,

and (2.4),

X2/k 3/2+(k/2-1) 1
<<y2dk( > XY

d<y d<y

< X1+1/ky lOgy

Thus G, satisfies (5.3) for 2n < 1/k — 2/k* — c.
For ('3, we note that, with T’ running over powers of 2, 2 < T < (2X)°,

or
(5.4) Gy(z) < kDR +e (1 + Z / g(t)ﬂtdtD :
pe T
Here
() = fy, kXA + kit) Zp (X + it)
= X+ it '
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By Lemmas 7 and 4,

(5.5) /X - / " g(t)z"dt

T

2 2T

dr < XlogT/ lg(t)
T

2dt

1+4e€

<

2T
Pk / | Z (X + it)|2dt.
T

Recalling Lemma 6, the right-hand side of (5.5) is
& X220k,

Combining (5.4), (5.5),

2X
Gg(l’)2d$ < X1+2/k72/k2+20(xfk)\)+56.
X

Since 2c(y — kA) = 2¢ (x — 1+ ¢ — ke), we see that (5.3) is valid for G if
n<c (1 — % — X)-

Our treatment of F'(x) resembles that of Zhai [19], but we give the details
for the convenience of the reader. Using the identity

2cos Acos B = cos(A — B) + cos(A + B),
we can write

2F (z)? = 22" (Ky + Fi(z) + Fy(x)),

Ky = Z p(dy)pu(dz)

1+1/k 1—1/k°
l1,02<X,d1,d2<y (8162) / (dldQ) /

l1do=l2d;

> ) u(ds) (<e ez) w)

hle) = cos 2w = _ZZ )y

b 01,62< X, d1,d2<y (C1l2) 1k (dydy) ' =1k d,  dy
é1d2§é£2d1

and

A= Y O o (G ) (14 0),

£1,62<X,d1,d2<y
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We now apply the particular case

2X
/ 22 R=2/k? g 27T(A£L'1/k +a)dr < XHUR=2/R A\
X

of Lemma 8. This yields

2 2 C;CQKX 14+2/k—2/k? 142/k—2/k?
(6:6) 2 [ F@rdr= 50 ((2)() e )

+0 (X1+1/k—2/k2(51 + 32)) ]

Here

-1

b _b
i d

1
Sl = )
el;X (010o) /R (dy dy) =17k
dy,d2<y

Zldz#fgdl

B 1 A
Sy = Z (010) 1R (dydy) =17k (d1+d2) ‘

£1,62<X
dy,d2<y

We evaluate Kx as follows. We may write

Kx =) bn),

n>1

where

b(n) = Z p(dy)p(ds)

V0NV (e d i1/
n=t1dy=Lads (6r62) (didz)
£1,62<X,d1,d2<y

If n <y, then clearly

ng —-1-1/k
bn) = > nldi)u(de) (R) (dydy)/E1

di|n da2|n

2

_ n—2—2/k Zﬂ(d)dQ/k
d|n
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A similar calculation yields

2

|b(n)| < n—2—2/k ZdQ/k < n—2+2/kd2(n)
a]

for all n. Hence.

2

(5.7) Kx = i n2 RN " p(d)dt )+ 0 (Z n—2+2/kd2(n)>

d|n n>y
= e+ O(y 12k Xe),
Turning to Sy, it is clear that

S <y Z (L16e) ™ R0 dy — lody |7
01 ,02<X
d1,d2<y
l1do#lady

< y2/k Z (5162)7171/1%,71

£1,02,dy,r
d1<y,r<Xy

<y 1og X

Similar reasoning yields the same bound for S,.
Recalling (5.6) and (5.7),

2X
/ F(x)?dx = dj, ((2X YL/l X1+2/k—2/k2>
X

+O(X1+2/k—2/k2+ey—1+2/k +X1+1/k—2/k2+6 1+2/k).

Y

Thus (5.2) is satisfied provided that

77<c<1—%) and
n<1l/k—c(1+2/k).

As noted above, this completes the proof of Theorem 3.
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§6 Proofs of Theorems 1 and 2.

Let k=3 or 4, o3 = %, o4 = %. Just as in §5, we find that

(6.1) Fe(z) = i/gk N f(yk,s)Zk(s)%sds

27 o —izC
+ Y p(d)Ay (%) +0(1).
d<y

Here yy, is to be specified below, y, > 1. Moreover, we can argue as in §5 to
obtain a large T', T < x¢ with

0'k+7,'IC S
(6.2) / I (yx, s) Zk(s) % ds < (logx)z* ‘{|n<a>é | f (yx, koy, + it)|

1 —ixC
2T
(T‘l/ | Z1 (0% + it)| dt + 1)
T

—k
< w"’““y,ﬁ’“ Ok .

We used Theorem 4 (together with the Cauchy-Schwarz inequality) and
Lemma 4 in the last step.
We take

— p00a—4/3 _ ;0.2260... — A40a/3-1/12 _ ,0.1931...

Ys Ya

It is easily verified that in each case, (6.2) yields

op+iz® 8
(6.3) / f(yr, 8) Zi(s) — ds < 2%
op—ix® S
From (2.1),
x
(6.4) > ud)A (55) = X+ Yi+ Olwo)
A<y
where
_ 1/k—1/k2 p(d) OO —1-1/k 2mlxt/* 1 1
X, = cat/FY Zdl—l/k ZE /cos( T 1 1+E
d<y =1

46



and

Vi=-8Y u@d) Y ¢ ((% —nk)l/k> .

d< T ke T
Y 2dk§n Sdk

Clearly, in bounding X, we need only show that for % < D < y, and
¢ > 1, we have

1/k
(6.5) Z p(d)e (%) & QMR DIk Ok =1/k41 /R e
d~D

Since (6.5) is trivial for D < x*%~141/k we assume that
(6.6) D > g1k

in proving (6.5). By appealing to [2], §7, we can suppose much more when
k = 3, namely

(6.7) D > %%,

For Y}, we follow the initial stages of the argument of Zhai and Cao, with
their (2.10) as the point of departure. Let P > 1 and write

H = max(z'/*=% p=a 1),
We find as in (5.7), (5.9) of [20] that in bounding Y%, it is sufficient to prove

21/ (2k) D\ /2 xl/k|(h’€>|
(68) P+9)/2 D1/2 [(3/2 (;;Md) (E) (Z b(h, b)e <_T>

h)eE

<<£B9k+€
for1< K <Hand1<D <y, Here
E=E(K,P)={(h,0):h~ K, Ph<{<2Ph}

as in Section 4, and |b(h, ¢)| < 1. Strictly speaking, one also needs to prove
the analogue of (6.8) with p(d) replaced by 1; this is easier and need not be
discussed separately.
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Naturally we may apply Lemma 12. Thus we need only prove in place of
(6.5) that, for a suitable U, 0 < U < D3,

1
(6.9) Sr= Z Z A€ <€ " ) & (VR DI=1/k Ok —1/k+1/k+e

mn
m~M n~N
mn~D

for ¢ > 1, MN < D, N > DU, |a,,| < 1; and that

k
) < gl/le—l/kxé)k—l/k—l-l/W-i—e

1
(6.10) S = Z Zamcne (gfrm

m~M n~N
mn~D

for ¢ >1, MN < D, U < N < D2 |a,| <1, |e,| < 1.
It turns out that (6.8) requires no new work in the case k = 4. It is shown
in §5 of Zhai and Cao [20] that

}/4<<xe(y4+x1/7y2/28+I1/8y2/12+$1/6yi/9—|—[L‘0'1875)7

which is easily seen to be stronger than we need. In the case k = 3, we can
quote the result we need from [2], §6 when D < 2%, Thus we suppose that

(6.11) 2% < D <y

in proving (6.8) for £ = 3. Appealing to Lemma 12, we need only prove in
place of (6.8) that, for a suitable U, 0 < U < D'/3,

!/ v 2!/ (h, )
612 ppags 2 2 an (mn) > ot (=)
m~M n~N (h)e€
mn~D
< glste

whenever MN =< D, N > DU™! and |a,,| < 1; and that

!/ e (h )
619 g 3 Senen 3 oo (= R0
m~M n~N (h)e€
mn~D
<<:E63+€

whenever MN =< D, U < N < D'? and |a,,| < 1, |b,] < 1.
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We begin with (6.9), (6.10) for & = 3. We take U = D'/3. By Lemma 13
with X =< (z'3D~', Ny = M and (k,\) = (2,2), the left-hand side of (6.9)

T
is
< (log .73)2{DN_1/2 + D2.Z'_1/3 + (D3+2n€1+2n$(1+2n)/3N—(1+2f€)M2()\—f$))1/(6-1—4/@)}
< (log x)2{D2/3 + (611D25w“/3N’11M4)1/50},
Moreover,

(D25x11/3N_11M4)1/50 < D19/50,,11/150 _ [y2/3,65-2/9

as a consequence of (6.7).
For (6.10), we appeal to Lemma 14 with X =< (24D~ (k,\) = (1/2,1/2),
obtaining

(6.14)
S[I < (log x)3€1/5{x1/15D9/20N1/10 + $1/18D1/2N1/9 + $1/15D2/5N1/5
L GU/B DS/ NS/ | p2/3 N5/18 | p N—1/2
VS IS/22N9/22 3/, -1/6)
< (logx)3€1/5{xl/l5Dl/2 + x1/18D5/9 4 x1/33D15/22

4 DP/S 4 166 D3I/ | pyB/2,-1/6y,

Now

D5/6 < D2/3Z‘03_2/9

because D < y3 = 29%~43 The remaining terms in the last expression

in (6.14) are easily seen to be of smaller order than ¢'/°D?/32%=2/9  This
establishes (6.10) and completes the proof of (6.5) for k = 3.
Turning to (6.9), (6.10) for k = 4, we suppose that

200795 — p401-3/4 ) < Ya.

Let U = D'/22=20443/8 Tt ig easily verified that 1 < U < D'/3. According to
Lemma 13 (i) with (k, ) = (1/14,11/14), X < (z'/*D~', Ny = M, we have

(log )28y < DN~Y? 4 D2~V 4 (D010 N—30)1/58,
Now

DN—1/2 <<D2/3 < D3/4l’94_3/16,
D2$_1/4 < D3/4£C94_3/16.

49



Finally,
(DSAzA N—36)1/88 ()28 477361/88
— (DA6y35/2-T24)1/88  [)3/4,04=3/16

since
D > g40a=3/4 < ,17/10-80s

This proves (6.9).
To obtain (6.10) in the range

031 - p < 20125

we apply Lemma 13 (i) with X < (24D, (k,A) = (25,2 + 2. This

exponent pair is due to Huxley [5], [6]; his significantly deeper work in [§]
hardly affects the value of 8,. The condition X > D follows from D < 2912,
We have

(log x>77/4SII < DN71/2 + DM71/4 + (D10+8n€1+2nx(1+21€)/4N)1/(14+121€).
Now

(6.15) DN~V2 « DU~Y? = p3/4g01=3/16
DM~Y4 « D7/8 « D3/4404-3/16

0.125 < 1’894 —3/2

since D < zx . Finally

< (D6697I187>1/9048 < D34y 0a=3/16

(D10+8nx(1+2/€)/4N)l/(14+12n) _ (D6412x187N570)1/9048

since

(6.16) D89 > 89(404=3/4) _ 3767/2-904864

This is where the precise value of 6, arises.
It remains to obtain (6.9) for

(6.17) %1% < D < y,.
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According to Lemma 14, with X =< (2'/4D!, (k,\) = (1/2,1/2), we have

(618) (10g$)—3511 < £1/5{$1/20D9/20N1/10 +$1/24D1/2N1/9
+ x1/20D2/5N1/5 + 1'1/44D6/11N3/11 + D2/3N5/18
4 DNV 4 g VSSDIS2IN/2 | D218y
< (VL0 DYZ U DS94 /4 pl1s/22
+x71/88D39/44 + D3/2$71/8 _'_D3/4x9473/16}7

where we have applied (6.15) in the last step. Now since D < y, = x401/3-1/12)

we have
D3/2,=1/8 < [)3/4,01-3/16

Moreover,
2124 ps/o D3/4$9473/16’

since

0.125 33/28—3604/7

D>z >x

It is easily verified that the remaining three terms in the last expression in
(6.18) are smaller than ¢'/° D3/43%4=3/16 This completes the proof of (6.10),
and indeed (6.5), for k£ = 4. Since we already have (6.3), (6.5) and (6.8), we
have finished the proof of Theorem 2.

It remains only to prove (6.12) and (6.13) for the short range (6.11) of D.
If H =1, then we can argue as on pp. 137-138 of Baker [2] to obtain (6.12),
(6.13). Thus we suppose that H > K > 1, and it follows that

KP3/2 S $1/3_93

from the choice of H.
We can dispose of the case

K Z DP_1/2$_5/27

by repeating verbatim the argument in the last paragraph of [2], §6. We
suppose that

(6.19) K < DP~1/2375/2T,
We shall prove (6.12), (6.13) with

(6.20) U = Dg~st1/3 p=1/2;
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obviously U < D3,
We can easily dispose of (6.12) using the Kusmin-Landau theorem. For
if N> DU = PY23%3-1/3 then

d (aB|(h 0]\ _ 2'PPK
dn DN

—~

mn

< ZL'_293+2/3P1/2KD_1
< $—203+13/27 — x—0.03...

from (6.19). A partial summation gives

D\Y® [—23|(h,0)| DN
(=) e < :
mn D 2/3PK

n~N
mn~D

and the left-hand side of (6.12) is

£1/6

- —1/6 13/2 0:
< S DA <z VOD? .

DN
. 2 - —
PK*M PR
Turning to (6.13), we may remove the condition mn ~ D from the sum

to be estimated at the cost of a factor log x, as noted earlier. Let us suppose
this has been done. Let

Q = max(64[z'*PKM 2N, 1).

We divide the interval [O, %] into () equal subintervals Iy,..., 1o, and

bound
/3
S 3 oS en 3w e (Z0)

m~M n~N  (hl)eE

as follows:

Q 3|(h. ¢
SI<S S| Y b0 (_M) |
m~M q=1 |n~N, (hL)EE mn
[(h,0)|/n€ly
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Cauchy’s inequality yields

(6.21)

Q _ /3
SP<MQY " D> | D cab(h,O)e (M)

mn
g=1 m~M |n~N, (h£)eE

[(h,0)|/nel,
/2 ((he, 0)]  [(ha, 6o)]
S Y N e I
nl,n27(h1,fl),(h2,€2) mn~M

(6.22)

where ny, ng, (h1,¢1), (ha,l2) are restricted in the last summation by

n N
A splitting-up argument yields

(6.23)

1S|? < MQlogx Z

n1,n2,(h1,01),(h2,(2)
(6.24)

’

> (_fff;f’ (\(h;flﬂ B ’(hi;jzﬂ))

mn~M

where the outer summation (6.23) is restricted by n; ~ N, (h;,{;) € £ and

(6.24)

r'/3PK ) N N

nq )
The positive number A is of the form

2" M N 8
A=—-=-— A< — h>0.
JspR - NS 2l

We can apply the Kusmin-Landau theorem again, since

'i (w”S <|<h1,f1>| - |<h2,e2>|>>‘ _ 1621°PK

1
< =
dm \ m ny N9 M2NQ — 2
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by the choice of (). Thus the inner sum in (6.23) is
) M?*N
< min (M, m) .

According to Lemma 11, the number of solutions ny, ny, (hy, 1), (hs, {s)
of (6.24) is
< 2(AP3K*N? + P32 K3N).

Thus

M?N
2 € 3 174 N2 3/2 173 :

< *MQlog x(P?K3N D2z~ /3 4 P32K3D),
S < $6Q1/2PK3/2(D3/2$_1/6 +DN_1/2).

The left-hand side of (6.12) is now seen to be
< /S pUAp=1201/2(D3/2,=1/6 | DN-1/2),
To verify that this is < 2%7¢ reduces to showing that
(6.25) Q < min(z?# PY2D=2 213 pl2D-IN)),

If @ =1, then (6.25) is a simple consequence of the lower bound N > U.
Otherwise (6.25) reduces to the two assertions

(6.26) e PPKM AN <« 2?3 pl/2D~2
and
(6.27) g BPKM 2N « 2?13 pl2D-IN,

Both assertions follow from (6.19). In the case of (6.26),
L1320 pU2 e f—2 N—1 D2 o 44/2T-20s )3/2 1.
In the case of (6.27),
223203 pU2 N2 N2 D)  p13/2T-205 1

This completes the proof of (6.13). All the required bounds are now in place,
and the proof of Theorem 1 is complete.
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