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1. Introduction

We write {y} for the fractional part of y. A real sequence y1, y2, . . . is said to be
uniformly distributed (mod 1) if

lim
N→∞

1
N

∑
k≤N
{yk}∈I

1 = m(I)

for each subinterval I of U = [0, 1). Here m(. . .) denotes Lebesgue measure.

Let S = {a1 < a2 < a3 < ...} be a strictly increasing sequence of real numbers
with a spacing condition,

ak+1 − ak ≥ σ > 0 (k = 1, 2, . . .).

In his fundamental paper on uniform distribution [29], Hermann Weyl showed that
the assertion

(1.1) a1x, a2x, a3x, . . . is uniformly distributed (mod 1)

holds for almost all x in U .

There are many ways of extending and refining this theorem about a sequence
of dependent random variables. Here we review some of the literature, including
results of Walter Philipp and his collaborators, and add some new theorems. A
survey that complements the present article is given in chapter 5 of Harman [15],
including improved proofs of some key results.

A result of particular interest is Salem’s [26] strengthening of Weyl’s assertion
when

(1.2) ak = O(kp)

for a constant p ≥ 1. When (1.2) holds, Salem showed that for a sequence of
positive integers S , (1.1) is valid except for a set of x of Hausdorff dimension at
most 1− 1/p. This result was also found by Erdös and Taylor [12]. The result was
extended to real sequences S by Baker [3]. An example to show that the bound
1− 1/p is attained for each p, with a sequence of positive integers S , was given in
Ruzsa [25].
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A strengthening of Weyl’s work that is valid for arbitrary S concerns the dis-
crepancy of the sequence (1.1). For a subinterval I of U , let

(1.3) Z(N, I, x) = |{k ≤ N : {akx} ∈ I}|.
Here |E| denotes the cardinality of a finite set E. Let

(1.4) D(N, x) = sup
I⊂U
|Z(N, I, x)−Nm(I)|,

where the supremum is taken over all subintervals of U .

The definition of uniform distribution (mod 1) is equivalent to

(1.5) D(N, x) = o(N) as N →∞.
It is known that

(1.6) D(N, x) = O(N1/2(logN)3/2+ε) a.e.

(Baker [4] for integer sequences; the general case is given by Harman [15]). An
example of Berkes and Philipp [6] shows that the constant 3/2 cannot be reduced
below 1/2.

For a lacunary sequence, namely a sequence S with
aj+1

aj
≥ c > 1 (j = 1, 2, . . .)

we can be more precise:
1
4
≤ lim sup

N

D(N, x)√
N log logN

≤ f(c) a.e.

This version of the law of the iterated logarithm is due to Philipp [22]. See Berkes,
Philipp, and Tichy [7] for further results of this kind; also the papers in the present
volume by Aistleitner and Fukuyama.

One way of extending Weyl’s theorem is to interpret x in (1.1) as a point of
Rd and {ajx} as the unique point ajx − k, k ∈ Zd, that lies in Ud. The definition
(1.4) must be modified; U is replaced by Ud, and the symbol I now denotes a box,
that is, a Cartesian product of subintervals of U . Again, the definition of uniform
distribution (mod 1) in [29] and subsequent work is equivalent to (1.5).

The extension of versions of (1.5) to this situation is discussed in [15, 21]. How-
ever, it seems that the following extension of Salem’s theorem is new. For brevity
write Ed(S) for the set of x in Ud for which the sequence a1x, a2x, . . . is not
uniformly distributed (mod 1).

Theorem 1. Suppose that (1.2) holds. Then

dimEd(S) ≤ d− 1
p
.

Without much effort, we can deduce the following from Rusza’s work.

Theorem 2. For every p ≥ 1, there exists a strictly increasing sequence of positive
integers S satisfying (1.2), for which

dimEd(S) = d− 1
p
.
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In metric diophantine approximation, a lot of effort goes into discovering what
happens at almost all points on a curve C in Rd. See for example Kleinbock and
Margulis [20]. For a sharp planar result and references to the recent literature, see
Vaughan and Velani [28]. However, it seems not to have been asked whether the
intersection of Ed(S) with a suitable curve is a null subset of the curve.

Let C be a curve given by

(1.7) x = x(t) = (x1(t), . . . , xd(t)) (a ≤ t ≤ b)

where xj ′ is continuous (1 ≤ j ≤ d). For a sequence S of integers, a necessary
condition for a result of the type mentioned is that the functions 1, x1, . . . , xd are
linearly independent over the rationals. In the contrary case, we have a relation

h1x1(t) + . . .+ hdxd(t) = hd+1 (a ≤ t ≤ b)

with integers hj not all 0. The point k with ajx− k = {ajx} satisfies

h1(ajx1(t)− k1) + . . .+ hd(ajxd(t)− k) ∈ Z

or
h{ajx(t)} = α

where there are only finitely many possibilities for the integer α as t and j vary.
(We write hy for the inner product if h ∈ Zd and y ∈ Rd). This restricts {ajx} to
points on a finite number of hyperplanes that intersect Ud, and precludes uniform
distribution.

The following positive result restricts C in a reasonable way, although it would
be nice to require the existence of fewer derivatives.

Theorem 3. Suppose that x(t), given by (1.6), satisfies
(1) xj

(d+1)(t) exists and is bounded (1 ≤ j ≤ d);
(2) The matrix

A(t) = [xi(j)(t)] (1 ≤ i, j ≤ d)

is non-singular (a ≤ t ≤ b).
Then (1.1) holds with x = x(t), except for a null set of t.

Once Theorem 3 is proved, it is easy to relax (2) to the assertion ‘A(t) is non-
singular a.e.’ This is left as an exercise for the interested reader.

An imperfect analogue of Salem’s theorem is:

Theorem 4. Make the hypotheses of Theorem 3. Suppose further that (1.2) holds.
Then the set

{t ∈ [a, b] : (1.1) fails for x = x(t)}
has Hausdorff dimension at most 1− 1

pd .

For the remainder of this section, let d = 1, and suppose that S is a sequence of
positive integers. We examine particularly bad failures of the assertion (1.1). We
say that the sequence a1x, a2x, . . . is almost uniformly distributed (mod 1) if
there is a sequence Mk →∞ such that

Mk
−1 Z(Mk, I, x)→ m(I)
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for all subintervals I of U . Let us write

F (S) = {x ∈ U : a1x, a2x, . . . is not almost uniformly distributed (mod 1)},

so that
F (S) ⊆ E1(S)

Piatetskii-Sapiro [23] showed that for subsequences S with

(1.8) ak = O(k),

the set F (S) is countable. This may be surprising at first. Baker [2] constructed
a sequence with

1 ≤ ak+1 − ak ≤ 2 (k ≥ 1)
for which E1(S) is uncountable. (This is a slight strengthening of a result in [12].)

If the sequence a1x, a2x, . . . is almost uniformly distributed, then obviously

(1.9) lim sup
N

Z(N, I, x)
N

≥ m(I)

for every subinterval I of U ; there is, of course, a corresponding statement about
the lim inf. We say that the sequence a1x, a2x, . . . is biased if (1.9) fails for some
interval I. The bias of the sequence is then

b(x) = sup
I⊂U

{m(I)− lim sup
N

Z(N, I, x)
N

}

Let B(S) be the set of x in U for which b(x) > 0. By the above remarks,

B(S) ⊆ F (S).

Kahane [16], unaware of [23], showed that (1.8) implies the countability of B(S).
He deduced this from the following finiteness result, which does not emerge from
the method of [23].

Theorem 5. Let S be a strictly increasing sequence of positive integers. Let C >
0, δ > 0. Let I be a subinterval of U . Suppose that

(1.10) ak ≤ Ck for infinitely many k.

The set of x for which

Z(N, I, x)
N

≤ m(I)− δ for N ≥ 1

is finite.

In particular, the set of x, say HI(S), for which

(1.11) akx /∈ I (mod 1) (k ≥ 1)

is finite under the hypothesis (1.8). This result was found independently by Amice
[1]. There is an interesting variant due to Kaufman [19]. Let I be a box in Ud. if
each of the sequences S1, . . . , Sd satisfies condition (1.10), then the set of x in U for
which

x(a1, . . . , ak) /∈ I (mod 1) (aj ∈ Sj , a1 < . . . < ad)
is countable.
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In this connection, we mention Boshernitzan’s result [8] that HI(S) has Hausdorff
dimension 0 under the condition

lim
k→∞

ak+1

ak
= 1

For a lacunary sequence S , quite the opposite is true. There is a subinterval I of U
for which HI(S) has Hausdorff dimension 1. This result was found independently
by de Mathan [10, 11] and Pollington [24].

The following strengthening of Theorem 5 seems to have been overlooked.

Theorem 6. Let S be a strictly increasing sequence of positive integers. Let C be
a positive integer and 0 < δ < 1. Assume that (1.10) holds.

(i) The set Bδ(S) of x in U for which b(x) ≥ δ is finite. In fact

|Bδ(S)| ≤ 144C
(

log
(

2e
δ

))2

δ−3.

(ii) Let I be a subinterval of U . Then

|HI(S)| ≤ min

 288C
m(I)3

,
144(C log

(
2e
m(I)

)
)2

m(I)2

 .

Part (ii) is not far from the truth for m(I) small. Let C be a positive integer
and 0 < δ < 1/2. Let E be the set of rational numbers in U of the form

r

sC
, 0 ≤ r < sC, (r, s) = 1, s ≤ 1

δ
.

Clearly

|E| � C

δ2

in view of the average order of the φ-function; see Hardy and Wright [14, Theorem
330]. Let aj = Cj. Then for x ∈ E, x = r

sC , we have

{ajx} = {jr
s
} /∈ I := (0, δ).

Thus E ⊆ HI(S), and

|HI(S)| � C

m(I)2
.

We conjecture that, in general, Theorem 6 (ii) could be improved to

|HI(S)| �ε

(
C

m(I)2

)1+ε

for every ε > 0.
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2. Proofs of Theorems 1 and 2

Let || . . . || denote Euclidean length. We write D(X) = sup{||x− y|| : x, y ∈ X}
for X ⊂ Rd.

Lemma 1. Let F be a non-negative function on

J = [a1, b1]× · · · × [ad, bd].

Suppose that ∂F
∂xi

exists, ∂F
∂xi
≤ A (1 ≤ i ≤ d, x ∈ J), and∫

J

F (x)dx ≤ B.

Let 0 < c < 2Adminj(bj − aj). Define

E = {x ∈ J : F (x) ≥ c}.
There is a covering of E with boxes I1, . . . , Iq such that, for 0 < γ < d,

(2.1)
q∑
j=1

D(Ij)γ �d BA
d−γcγ−(d+1).

Proof. Let

Mj =
[

2Ad
c

(bj − aj)
]

+ 1 ≤ 4Ad
c

(bj − aj).

We partition J into M1 . . .Md boxes whose sides have respective lengths
(bj − aj)/Mj (1 ≤ j ≤ d). Note that

c

4Ad
≤ bj − aj

Mj
≤ c

2Ad
.

Among these M1 . . .Md boxes, suppose that I1, . . . , Iq are those that meet E. Now

F (x) ≥ c

2
on Il

by applying the mean value theorem d times. Hence

c

2
q

d∏
j=1

bj − aj
Mj

=
c

2

q∑
l=1

m(Il) ≤ B.

So

q ≤ 2B
c

d∏
j=1

Mj

bj − aj
≤ 2B

c

(
4Ad
c

)d
.

By Hölder’s inequality,
q∑
l=1

D(Il)γ ≤ q1−γ/d
(

q∑
l=1

D(Il)d
)γ/d

�d q
1−γ/d

(
q∑
l=1

m(Il)

)γ/d

�d

(
BAd

cd+1

)1−γ/d(
B

c

)γ/d
as required. �
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2.1. Proof of Theorem 1.

Naturally we may confine attention to x in a fixed box [−K,K]d. Let h =
(h1, . . . , hd) be any nonzero point of Zd. By Weyl’s criterion, it suffices to show
that the set

Z = {x ∈ [−K,K]d :

∣∣∣∣∣
N∑
k=1

e(akhx)

∣∣∣∣∣ > N(logN)−
1
2 for infinitely many N}

has dimension at most d− 1
p . Here e(θ) denotes e2πiθ.

Let
Nr = [e(r

1
2 )].

Then
Nr+1

Nr
− 1 ≤ exp((r + 1)

1
2 )

exp(r
1
2 )− 1

− 1 � r−
1
2 .

Suppose N is a large positive integer with∣∣∣∣∣
N∑
k=1

e(akhx)

∣∣∣∣∣ > N(logN)−
1
2 ,

say
Nr ≤ N < Nr+1.

Then ∣∣∣∣∣∣
∑
k≤Nr

e(akhx)

∣∣∣∣∣∣ > N

(logN)
1
2
− (N −Nr)

>
Nr

(logNr)
1
2
− (Nr+1 −Nr)

= Nr

(
1

(logNr)
1
2

+ O(r−
1
2 )
)

>
Nr

2(logNr)
1
2

since (logNr)−
1
2 ≥ r− 1

4 . Hence

Z ⊆ {x ∈ [−K,K]d :

∣∣∣∣∣
Nr∑
k=1

e(akhx)

∣∣∣∣∣ > Nr

2(logNr)
1
2

for infinitely many r}

=
∞⋂
m=1

∞⋃
r=m

Er.

Here

Er =

{
x ∈ [−K,K]d :

∣∣∣∣∣
Nr∑
k=1

e(akhx)

∣∣∣∣∣ > Nr

2(logNr)
1
2

}
.
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We now apply Lemma 1 with J = [−K,K]d,

F (x) =

∣∣∣∣∣
Nr∑
k=1

e(akhx)

∣∣∣∣∣
2

=
Nr∑
k=1

Nr∑
l=1

e((ak − al)hx),

∂F

∂xj
=

Nr∑
k=1

Nr∑
l=1

2πi(ak − al)hje((ak − al)hx)

≤ C1N
p+2
r ,

where C1 = C1(h, S) ≥ 1. Take A = C1N
p+2
r , c = N2

r (4 logNr)−1, so that c < 2Ad
as required. With C2 = C2(σ,K), we have∫

F (x) dx ≤ C2Nr logNr = B.

To see this, suppose for example that h1 6= 0. Then∣∣∣∣∣
∫

[−K,K]d−1
dx2 . . . dxd

∫ K

−K
F (x) dx1

∣∣∣∣∣ ≤ (2K)d−1
Nr∑
k=1

Nr∑
l=1

∣∣∣∣∣
∫ K

−K
e((ak − al)h1x1) dx1

∣∣∣∣∣
≤ (2K)dNr + 2

Nr∑
k=1

k−1∑
l=1

1
ak − al

≤ (2K)dNr +
2
σ

Nr∑
k=1

k−1∑
l=1

1
k − l

< C2Nr logNr.

Finally, let 0 < ε < 1
2p and take

γ = d− 1
p

+ 2ε.

By Lemma 1, we can cover Er with boxes Ir1, . . . , Irq, q = q(r) such that
q∑
l=1

D(Ir`)γ �d,S,h Nr logNr(Np+2
r )d−γ

{
N2
r

logNr

}γ−(d+1)

.

Hence
q∑
l=1

D(Ir`)γ < Npd−1−pγ+ε
r

for large r. The exponent of Nr here is negative and so

∞∑
r=1

q(r)∑
l=1

D(Ir`)γ < ∞.
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By choosing m large, we cover
⋃∞
r=mEr with boxes {Ir` : r ≥ m, 1 ≤ l ≤ q(r)} for

which the sum
∞∑
r=1

q(r)∑
l=1

D(Ir`)γ

is arbitrarily small. These intervals cover Z, and so Z has dimension at most γ.
The theorem follows at once. �

2.2. Proof of Theorem 2.

For any non-empty subsets A, B of R,

dim(A×B) ≥ dimA+ dimB

(Falconer [13, Corollary 5.10]).

We may suppose that d ≥ 2. Now

Ed(S) ⊇ E1(S)× Ud−1.

For suppose that (x1, . . . , xd) /∈ Ed(S). We claim that x1 /∈ E1(S). Indeed for
I ⊆ U ,

1
N
Z(N, I, x1) =

1
N
Z(N, I × Ud−1, (x1, . . . , xd))→ md(I × Ud−1) = m1(I)

as N →∞.

Now let p ≥ 1 and let S be the sequence satisfying (1.2) for which

dimE1(S) = 1− 1
p

constructed by Ruzsa [25]. (We may choose any S with ak = O(k) for p = 1.) We
have

dimEd(S) ≥ dim(E1(S)× Ud−1)

≥ dimE1(S) + dimUd−1

= 1− 1
p

+ d− 1 = d− 1
p
.

Since we know already that dimEd(S) ≤ d− 1
p , Theorem 2 follows. �

It is interesting to observe that in Lemma 1, the exponents attached to B,A, c
cannot be improved in the following sense. If there are constants e1, . . . e5 such that
the left-hand side of (2.1) is always

�d B
e1Ae2−e3γce4γ−e5

the we cannot have e1 ≤ 1, e2 ≤ d, e3 ≥ 1, e4 ≤ 1, e5 ≥ d+ 1 unless equality holds
in all five cases. Otherwise we could clearly obtain a better bound than d − 1

p for
dimEd(S), in contradiction to Theorem 2.
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3. Proof of Theorems 3 and 4.

Lemma 2. Let ε > 0. Let f be a real function on [a, b]. Suppose that f (m) is
continuous and

|f (m)(t)| ≥ 1 (a ≤ t ≤ b)

After excluding 2m − 1 pairwise disjoint intervals of length ≤ 2ε
1
m from [a, b] we

have

(3.1) |f(t)| ≥ ε.

Proof. By making a sign change if necessary, we may replace the hypothesis by

(3.2) f (m)(t) ≥ 1 (a ≤ t ≤ b).

We prove the assertion (for all f, ε) using induction on m.

For m = 1, f is strictly increasing, and

{t ∈ [a, b] : −ε < f(t) < ε}

is an interval I (possibly empty). Say I = [u, v]. The mean value theorem yields

min
x∈[a,b]

f ′(x)(v − u) ≤ f(v)− f(u) ≤ 2ε

giving v − u ≤ 2ε as required.

Suppose the assertion has been proved for all f, ε, with 1, . . . ,m− 1 in place of
m. Let η = ε1/m. By the case m = 1, (3.2) implies∣∣∣f (m−1)(t)

∣∣∣ ≥ η
after excluding an interval I0 of length ≤ 2η. Let I be one of the intervals comple-
mentary to I0 in [a, b]. Then g = η−1f has∣∣∣g(m−1)(t)

∣∣∣ ≥ 1 on I.

By the case m − 1, after excluding 2m−1 − 1 pairwise disjoint intervals in I, each
of length ≤ 2( εη )

1
m−1 = 2ε1/m we have

|g(t)| ≥ ε

η
,

that is, |f(t)| ≥ ε.

Thus after excluding I0 and 2(2m−1 − 1) = 2m − 2 other intervals of length
≤ 2ε1/m in [a, b]\I0, the whole family of 2m − 1 intervals having pairwise disjoint
interiors, we have (3.1). After adjusting the endpoints of abutting intervals, this
completes the induction step and proves Lemma 1. �

By considering the example f(t) = tm

m! , it is easy to see that the lemma is sharp
for given m apart from the value of the constant 2m − 1.
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Lemma 3. Let 0 < ε < 1, m ≥ 2. Suppose that f is a real function on [a, b] with
bounded (m+ 1)-th derivative. Let

C = max
{∣∣∣f (j)(t)

∣∣∣ : a ≤ t ≤ b, 2 ≤ j ≤ m+ 1
}
.

Suppose further that

max
{
|f ′(t)|, . . . , |f (m)(t)|

}
≥ B on [a, b].

After excluding at most (
C(b− a)

B
+ 1
)(

2m−1 − 1
)

pairwise disjoint intervals of length at most 2ε
1

m−1 from [a, b] we have

(3.3) |f ′(t)| ≥ Bε

2
.

Proof. We divide [a, b] into
[
C(b−a)
B

]
+ 1 pairwise disjoint intervals I1, I2, . . . of

length ≤ B
C . At the midpoint of Ik, there is a j = jk, 1 ≤ j ≤ m, with∣∣∣f (j)(t)

∣∣∣ ≥ B.
By the mean value theorem, |f (j)(t)| ≥ B/2 in Ik. If j ≥ 2, we find that∣∣∣∣2f ′B

∣∣∣∣ ≥ ε
on Ik after excluding at most 2m−1 − 1 intervals of length 2ε1/(j−1) ≤ 2ε1/(m−1);
this is an application of Lemma 2 with 2f ′

B , j − 1 in place of f , m. The lemma
follows on summing the total number of excluded intervals contained in those Ik
with jk ≥ 2. �

In the remainder of this section, C1, C2, . . . denote positive constants depending
only on h, S and on the function x(.) = (x1(.), . . . , xd(.))

Lemma 4. Make the hypotheses of Theorem 3. Let h ∈ Zd, h 6= 0,

(3.4) f(t) = hx(t).

Then
max

{
|f ′(t)|, . . . , |f (d)(t)|

}
≥ C1 on [a, b].

Proof. Fix t ∈ [a, b]. We have f ′(t)
...

f (d)(t)

 = A(t)

 h1

...
hd

 ;

so that, writing

A(t)−1 = [cij(t)] h1

...
hd

 = A(t)−1

 f ′(t)
...

f (d)(t)

 ,
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we have

1 ≤ max(|h1|, . . . , |hd|) ≤ max
j≤d

(|cj1(t)|+ · · ·+ |cjd(t)|) max
∣∣∣f (j)(t)

∣∣∣
≤ C2 max

j≤d

∣∣∣f (j)(t)
∣∣∣ ,

since the determinant detA(t) is bounded away from zero. �

Lemma 5. Make the hypotheses of Lemma 4. Let

FN (t) =

∣∣∣∣∣
N∑
k=1

exp (akhx(t))

∣∣∣∣∣
2

,

then ∫ b

a

FN (t) dt ≤ C3N
2− 1

d (logN)1/d.

Proof. Define f(t) by (3.4). Let

λ =
(

logN
N

) d−1
d

.

By Lemmas 3 and 4, we may partition [a, b] into intervals I1, . . . Il, J1, . . . , Jk with
l ≤ k + 1 ≤ C4 and

|f ′(t)| ≥ C5λ (t ∈
⋃
i≤l

Ii),

m(Ji) ≤ 2λ
1

(d−1) (1 ≤ i ≤ k).

Trivially, ∫
Ji

FN (t) dt ≤ N2m(Ji) ≤ 2(logN)1/dN2− 1
d .

Now ∫
Ii

FN (t) dt = Nm(Ii) + 2 Re
N∑
k=1

∑
1≤j<k

∫
Ii

exp((ak − aj)f(t)) dt

≤ Nm(Ii) + 8
N∑
k=1

∑
1≤j<k

1
ak − aj

max
t∈Ii

1
|f ′(t)|

(by a standard lemma; see [27, Lemma 4.2]). Thus∫
Ii

FN (t) dt < C6

N +
1
σλ

N∑
k=1

∑
1≤j<k

1
k − j


< C7

N logN
λ

= C7N
2− 1

d (logN)1/d.

The lemma follows on assembling these upper bounds. �
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3.1. Proof of Theorem 3. By Weyl’s criterion, we need only show for fixed h ∈
Zk, h 6= 0 that

(3.5) lim
N→∞

1
N

N∑
k=1

exp(hx(t)) = 0

for almost all t. Let FN (t) be as in Lemma 5. According to (a slight variant of)
a theorem of Davenport, Erdös and LeVeque [9], a sufficient condition for (3.5) to
hold a.e. is

∞∑
N=1

N−3

∫ b

a

FN (t) dt <∞

We complete the proof on an application of Lemma 5. �

3.2. Proof of Theorem 4. Let

γ = 1− 1
pd

+ 2ε,

where 0 < ε < 1
2pd . As in the proof of Theorem 1, it suffices to show that

Z(1) =

{
t ∈ [a, b] :

∣∣∣∣∣
N∑
k=1

exp(akhx(t))

∣∣∣∣∣ > N(logN)−1/2 for infinitely many N

}
has dimension at most γ. Here h is a fixed nonzero element of Zd.

Just as in that proof,

Z(1) ⊆
∞⋂
m=1

∞⋃
r=m

E(1)
r ,

where

E(1)
r =

{
t ∈ [a, b] :

∣∣∣∣∣
Nr∑
k=1

exp(akhx(t))

∣∣∣∣∣ > Nr
(2 logNr)1/2

}
We apply Lemma 1 with 1 in place of d, and

F (t) =

∣∣∣∣∣
Nr∑
k=1

exp(akhx(t))

∣∣∣∣∣
2

,

F ′(t) = 2πi
Nr∑
k=1

Nr∑
l=1

(ak − al)hx′(t) exp((ak − al)hx(t))

≤ C8N
p+2
r .

Thus in Lemma 1 we take

A = C8N
p+2
r , B = C9N

2−1/d
r (logNr)1/d

(recalling Lemma 5) and

c =
N2
r

4 logNr
.
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We can cover E(1)
r with intervals Ir1, . . . , Irq, q = q(r), such that

q∑
l=1

|Irl|γ � C9N
2− 1

d
r (logNr)1/d(C8N

p+2
r )1−γ

(
N2
r

4 logNr

)γ−2

.

Hence
q∑
l=1

|Irl|γ < Np−1/d−pγ+ε
r

for large r. The exponent of Nr is negative. Just as in the proof of Theorem 1,
dimZ(1) ≤ γ, and the theorem follows. �

4. Proof of Theorem 6

This is rather similar to Kahane’s argument. That argument is in turn adapted
from Kahane and Salem [17]. In [17], S is arbitrary, and B(S) is shown not to
support a positive Borel measure with Fourier-Stieltjes coefficients vanishing at
infinity. We require two standard lemmas. For a subinterval I of U , write

ΦI(x) =

{
1 if {x} ∈ I
0 otherwise.

Lemma 6. Let L be a natural number. For any subinterval I = [a, b) of U , there
is a trigonometric polynomial

T (x) =
L∑

l=−L

cl exp(lx)

satisfying

T (x) ≤ ΦI(x),(4.1)

c0 = m(I)− 1
L+ 1

,(4.2)

|cl| ≤ min
(

3
2|l|

,
1

L+ 1
+m(I)

)
(l 6= 0).(4.3)

Proof. This is obtained by combining Lemma 2.7 and (2.20) of [5], supplemented
by the inequality | sinα| ≤ |α|. �

Lemma 7. Let x1, . . . , xu be distinct points of U . Then

lim
N→∞

1
2N + 1

N∑
s=−N

∣∣∣∣∣
u∑
t=1

bt exp(sxt)

∣∣∣∣∣
2

=
u∑
t=1

|bt|2.

Proof. Let µ be the measure on U given by

µ(E) =
∑
xt∈E

bt.

According to Wiener ([18], p. 42, Corollary),

lim
N→∞

1
2N + 1

N∑
s=−N

|µ̂(s)|2 =
∑
τ

|µ({τ})|2.



WEYL’S THEOREM IN THE MEASURE THEORY OF NUMBERS 15

The lemma follows at once. �

4.1. Proof of Theorem 6. Let r be a natural number and 0 < β < 1. We first
obtain an upper bound for the cardinality of the set H(r, β) of x in U for which
there exists a subinterval I of U with

Z(N, I, x)
N

≤ m(I)− β (N ≥ r).

We may suppose H(r, β) is nonempty. Let x1, . . . , xu be distinct points of H(r, β).
For t = 1, . . . , u let It be an interval such that

N∑
k=1

ΦIt
(akxt) ≤ N(m(It)− β) (N ≥ r)

Let Tt(x) be the trigonometric polynomial in Lemma 6 with I = It, L =
[

2
β

]
,

Tt(x) =
L∑

l=−L

ct(l) exp(lx).

then for given t and N ≥ r,

N

(
m(It)−

1
L+ 1

)
+

N∑
k=1

∑
0<|l|≤L

ct(l) exp(lakxt)

=
N∑
k=1

Tt(akxj) ≤ N(m(It)− β).

Since 1
L+1 <

β
2 ,

N∑
k=1

∑
0<|l|≤L

ct(l) exp(lakxt) ≤ −
Nβ

2
,

and summing over t,

(4.4)
∑

0<|l|≤L

N∑
k=1

u∑
t=1

ct(l) exp(lakxt) ≤ −
Nuβ

2

for N ≥ r; so that

(4.5)
∑

0<|l|≤L

∣∣∣∣∣
N∑
k=1

u∑
t=1

ct(l) exp(lakxt)

∣∣∣∣∣ ≥ Nuβ

2
.

For l counted in (4.5), Cauchy’s inequality gives∣∣∣∣∣
N∑
k=1

u∑
t=1

ct(l) exp(lakxt)

∣∣∣∣∣
2

≤ N
N∑
k=1

∣∣∣∣∣
u∑
t=1

ct(l) exp(lakxt)

∣∣∣∣∣
2

(4.6)

≤ N
CLN∑

s=−CLN

∣∣∣∣∣
u∑
t=1

ct(l) exp(sxt)

∣∣∣∣∣
2
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whenever N satisfies nN ≤ CN . The last expression in (4.6) is

≤ (2 + ε)CLN2
u∑
t=1

|ct(l)|2

by Lemma 7 if, in addition, N is sufficiently large. Comparing this with (4.5), we
find that

(4.7)
uβ

2
≤

∑
0<|l|≤L

(2CL)1/2
(

u∑
t=1

|ct(l)|2
)1/2

,

since ε is arbitrary.

Recalling (4.3), (
u∑
t=1

|ct(l)|2
)1/2

≤ 3u1/2

2|l|
,

∑
0<|l|≤L

(
u∑
t=1

|ct(l)|2
)1/2

≤ 3u1/2 log(eL),

so that (4.7) yields
uβ

2
≤ 3(2CLu)1/2 log(eL),

and indeed
|H(r, β)| ≤ 144C log2(2e/β)β−3.

Since H(1, β) ⊆ H(2, β) ⊆ . . . , it is clear that

(4.8)

∣∣∣∣∣∣
⋃
r≥1

H(r, β)

∣∣∣∣∣∣ ≤ 144C log2(2e/β)β−3.

For x ∈ Bδ(S), there is an interval I and an integer r such that

Z(N, I, x)
N

< m(I)− δ + ε (N ≥ r).

Hence

(4.9) Bδ(S) ⊂
⋃
r≥1

H(r, δ − ε).

Here ε is arbitrary, 0 < ε < δ. Theorem 6(i) follows on combining (4.8) and (4.9),
and letting ε tend to 0.

Now let x1, . . . , xu be distinct points of HI(S) (if it is a nonempty set). We
return to our basic inequality (4.4), in which we now have

It = I, ct(l) = c(l), β = m(I),

and recalling (4.3),

|c(l)| ≤ 3β
2

(l 6= 0).
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Thus ∣∣∣∣∣∣
∑

0<|l|≤L

N∑
k=1

u∑
t=1

c(l) exp(lakxt)

∣∣∣∣∣∣ ≥ Nuβ

2
.

Write

ds =
∑
akl=s

0<|l|≤L, k≤N

c(l),

fs =
∑
akl=s

0<|l|≤L, k≤N

1.

Clearly |ds| ≤ 3
2βfs. Suppose that N satisfies nN ≤ CN . We have∣∣∣∣∣∣

∑
|s|≤CLN

u∑
t=1

ds exp(sxt)

∣∣∣∣∣∣ ≥ Nuβ

2
.

Cauchy’s inequality gives

(4.10)
∑

|s|≤CLN

|ds|2
∑

|s|≤CLN

∣∣∣∣∣
u∑
t=1

exp(sxt)

∣∣∣∣∣
2

≥ 1
4
N2u2β2.

Now ∑
|s|≤CLN

|ds|2 ≤
9
4
β2

∑
|s|≤CLN

f2
s .

This last sum is simply 2M , where M is the number of solutions to

lak = mar 1 ≤ l, m ≤ L, 1 ≤ k, r ≤ N.

A trivial bound for M is NL2. We can obtain a different bound by noting that
for fixed l, m we must have ak ≡ 0(modm/(m, l)) and there are ≤ CN(m, l)/m
solutions to this. This yields

M ≤ CN
∑

1≤l,m≤L

(m, l)
m

≤ CN
∑
d≤L

d

(
L

d

) ∑
m≤L/d

1
md

≤ CNL
∑
d≤L

1
d

∑
m≤L/d

1
m

≤ CNL(log(eL))2,

and ∑
|s|≤CLN

|ds|2 ≤
9
2
β2 min

(
NL2, CNL(log(eL))2

)
.
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As for the other factor on the left-hand side of (4.10), we have∑
|s|≤CLN

∣∣∣∣∣
u∑
t=1

exp(sxt)

∣∣∣∣∣
2

≤ (2 + ε)CLNu

for sufficiently large N , by Lemma 7. We conclude that

18(2 + ε)Cu(LN)2 min
(
L,C(log(eL))2

)
≥ (Nu)2.

Since ε is arbitrary, this gives the stated result. �
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