WEYL’S THEOREM IN THE MEASURE THEORY OF
NUMBERS

R.C. BAKER, R. COATNEY, AND G. HARMAN

1. INTRODUCTION

We write {y} for the fractional part of y. A real sequence y1,y2, ... is said to be
uniformly distributed (mod 1) if

!
im o 2 1=md)
k<N
{yr}el

for each subinterval I of U = [0,1). Here m(...) denotes Lebesgue measure.

Let § = {a1 < az < a3z < ...} be a strictly increasing sequence of real numbers
with a spacing condition,

ap1—ap>0>0 (k=1,2,...).

In his fundamental paper on uniform distribution [29], Hermann Weyl showed that
the assertion

(1.1) a1, ask, asx, ... is uniformly distributed (mod 1)

holds for almost all z in U.

There are many ways of extending and refining this theorem about a sequence
of dependent random variables. Here we review some of the literature, including
results of Walter Philipp and his collaborators, and add some new theorems. A
survey that complements the present article is given in chapter 5 of Harman [15],
including improved proofs of some key results.

A result of particular interest is Salem’s [26] strengthening of Weyl’s assertion
when

(1.2) ai, = O(kP)

for a constant p > 1. When (1.2) holds, Salem showed that for a sequence of
positive integers S, (1.1) is valid except for a set of = of Hausdorfl dimension at
most 1 — 1/p. This result was also found by Erdés and Taylor [12]. The result was
extended to real sequences S by Baker [3]. An example to show that the bound
1—1/p is attained for each p, with a sequence of positive integers §, was given in
Ruzsa [25].
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A strengthening of Weyl’s work that is valid for arbitrary S concerns the dis-
crepancy of the sequence (1.1). For a subinterval I of U, let

(1.3) Z(N,I,z) = |{k < N : {arz} € I}

Here |E| denotes the cardinality of a finite set E. Let

(1.4) D(N,z) =sup |Z(N,I,x) — Nm(I)],
Icu

where the supremum is taken over all subintervals of U.

The definition of uniform distribution (mod 1) is equivalent to

(1.5) D(N,z) = o(N) as N — oc.
It is known that
(1.6) D(N,z) = O(N'?(log N)3/%*€) a.e.

(Baker [4] for integer sequences; the general case is given by Harman [15]). An
example of Berkes and Philipp [6] shows that the constant 3/2 cannot be reduced
below 1/2.

For a lacunary sequence, namely a sequence § with

a; .

s e>1 (j=1,2,..)
a;

we can be more precise:

D(N
— < limsup & < f(c) ae.
4 N  +/Nloglog N
This version of the law of the iterated logarithm is due to Philipp [22]. See Berkes,
Philipp, and Tichy [7] for further results of this kind; also the papers in the present
volume by Aistleitner and Fukuyama.

One way of extending Weyl’s theorem is to interpret = in (1.1) as a point of
R? and {a;x} as the unique point ajz — k, k € Z%, that lies in U?. The definition
(1.4) must be modified; U is replaced by U?, and the symbol I now denotes a box,
that is, a Cartesian product of subintervals of U. Again, the definition of uniform
distribution (mod 1) in [29] and subsequent work is equivalent to (1.5).

The extension of versions of (1.5) to this situation is discussed in [15, 21]. How-
ever, it seems that the following extension of Salem’s theorem is new. For brevity
write E4(S) for the set of z in U¢ for which the sequence a;z, asz, ... is not
uniformly distributed (mod1).

Theorem 1. Suppose that (1.2) holds. Then

dim E4(s) < d— L
p

Without much effort, we can deduce the following from Rusza’s work.

Theorem 2. For every p > 1, there exists a strictly increasing sequence of positive
integers S satisfying (1.2), for which

1
dim E4($) = d— .
p
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In metric diophantine approximation, a lot of effort goes into discovering what
happens at almost all points on a curve ¢ in R?. See for example Kleinbock and
Margulis [20]. For a sharp planar result and references to the recent literature, see
Vaughan and Velani [28]. However, it seems not to have been asked whether the
intersection of E4(S) with a suitable curve is a null subset of the curve.

Let C be a curve given by

(1.7) x=a(t) = (x1(t),...,zq(t)) (a<t <))
where z;’ is continuous (1 < j < d). For a sequence S of integers, a necessary
condition for a result of the type mentioned is that the functions 1,z1,...,z4 are

linearly independent over the rationals. In the contrary case, we have a relation
hiz1(t) + ...+ haza(t) = har1 (a <t <b)
with integers h; not all 0. The point k with a;x — k = {a,z} satisfies
hi(ajri(t) — k1) + ... 4 ha(ajza(t) — k) € Z
or
h{a;z(t)} = a
where there are only finitely many possibilities for the integer o as t and j vary.
(We write hy for the inner product if h € Z? and y € R?). This restricts {a;z} to

points on a finite number of hyperplanes that intersect U?, and precludes uniform
distribution.

The following positive result restricts C in a reasonable way, although it would
be nice to require the existence of fewer derivatives.

Theorem 3. Suppose that x(t), given by (1.6), satisfies
(1) x;( 1 (t) exists and is bounded (1 < j < d);
(2) The matriz
Alt) = [z91)] (1<i,j<d)
is non-singular (a <t <b).
Then (1.1) holds with © = x(t), except for a null set of t.

Once Theorem 3 is proved, it is easy to relax (2) to the assertion ‘A(¢) is non-
singular a.e.” This is left as an exercise for the interested reader.

An imperfect analogue of Salem’s theorem is:

Theorem 4. Make the hypotheses of Theorem 3. Suppose further that (1.2) holds.
Then the set
{t € [a,b] : (1.1) fails for x = z(t)}
has Hausdorff dimension at most 1 — id.
P

For the remainder of this section, let d = 1, and suppose that S is a sequence of
positive integers. We examine particularly bad failures of the assertion (1.1). We
say that the sequence ajx,asx, ...is almost uniformly distributed (mod1) if
there is a sequence M} — oo such that

Myt Z(My, I, z) — m(I)
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for all subintervals I of U. Let us write
F(S) ={z € U : a1z, asx,...is not almost uniformly distributed (mod 1)},

so that

F(s) C EYS)
Piatetskii-Sapiro [23] showed that for subsequences § with
(1.8) ar, = O(k),

the set F'(S) is countable. This may be surprising at first. Baker [2] constructed
a sequence with
1<apr—ar <2 (k>1)

for which E1($) is uncountable. (This is a slight strengthening of a result in [12].)

If the sequence ajx, asz, ... is almost uniformly distributed, then obviously
Z(N, I
(1.9) lim sup ZIN.1,z) >m(I)
N N

for every subinterval I of U; there is, of course, a corresponding statement about
the liminf. We say that the sequence a;x,asx, ... is biased if (1.9) fails for some
interval I. The bias of the sequence is then

b(x) =sup {m(I)— limsup M}
Icu N N

Let B(S) be the set of z in U for which b(x) > 0. By the above remarks,
B(S) C F(S).

Kahane [16], unaware of [23], showed that (1.8) implies the countability of B(S).
He deduced this from the following finiteness result, which does not emerge from
the method of [23].

Theorem 5. Let S be a strictly increasing sequence of positive integers. Let C' >
0,6 > 0. Let I be a subinterval of U. Suppose that

(1.10) ar < Ck  for infinitely many k.
The set of x for which
Z(N, I
M <m(I)—§ for N >1
N
is finite.
In particular, the set of x, say H(S), for which
(1.11) arpx ¢ I (mod1) (k>1)

is finite under the hypothesis (1.8). This result was found independently by Amice
[1]. There is an interesting variant due to Kaufman [19]. Let I be a box in U?. if
each of the sequences 51, ..., S, satisfies condition (1.10), then the set of  in U for
which

z(ai,...,ar) ¢ I (mod1) (aj € S5,a1 < ...<aq)

is countable.
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In this connection, we mention Boshernitzan’s result [8] that H;(S) has Hausdorff
dimension 0 under the condition

. Q41
lim R

k—o0 ag
For a lacunary sequence §, quite the opposite is true. There is a subinterval I of U
for which H;(S) has Hausdorfl dimension 1. This result was found independently
by de Mathan [10, 11] and Pollington [24].

The following strengthening of Theorem 5 seems to have been overlooked.

Theorem 6. Let S be a strictly increasing sequence of positive integers. Let C be
a positive integer and 0 < 6 < 1. Assume that (1.10) holds.

(i) The set Bs(S) of x in U for which b(x) > § is finite. In fact

|Bs(S)| < 144C (log (%;))2 53,

(i) Let I be a subinterval of U. Then

assC 144(Clog (7))?
m(I)3’ m(I)?

|H;(S)| < min

Part (ii) is not far from the truth for m(I) small. Let C' be a positive integer
and 0 < 6 < 1/2. Let F be the set of rational numbers in U of the form

1
%, 0<r<sC, (rs) =1, sgg.
Clearly
C
B> <

in view of the average order of the ¢-function; see Hardy and Wright [14, Theorem

330]. Let a; = Cj. Then for v € E,x = &, we have

faa} = {2} ¢ 1= (0,6).

Thus E C H;(S), and

c
()

|Hi(S)| >

3

We conjecture that, in general, Theorem 6 (ii) could be improved to

11y ()] <. (m(%f

for every € > 0.
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2. PROOFS OF THEOREMS 1 AND 2

Let ||...]|| denote Euclidean length. We write D(X) = sup{||z — y|| : z,y € X}
for X c R%

Lemma 1. Let F be a non-negative function on
J = [a1,b1] X oo X [ad,bd].
Suppose that % exists, % <A (1<i<d,zelJ), and

/F(w)dm < B.
J
Let 0 < ¢ < 2Admin;(b; — a;). Define
E={zeJ:F(z)>c}
There is a covering of E with boxes I1,...,I; such that, for 0 <y < d,

q
(2.1) > D(I;)7 <q BAT D,
j=1

Proof. Let

2Ad 4Ad
My = | 22000 = 0] + 1< 2200, - )

We partition J into Mj ... My boxes whose sides have respective lengths
(bj —aj)/M; (1<j<d). Note that
c b; —a; c
4Ad — M; T 2Ad
Among these M; ... My boxes, suppose that Iy, ..., I, are those that meet £. Now

F(x)zg on I

by applying the mean value theorem d times. Hence

d q

c b; —a; c

= - = — I,)) < B.

27113 5 2 il <
j=1 =1

So d d

J< BT M L 2B (1

c ++bj—a; c c
j=1

as required. (Il
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2.1. Proof of Theorem 1.
Naturally we may confine attention to z in a fixed box [~K,K]?. Let h =

(h1,...,hq) be any nonzero point of Z¢. By Weyl’s criterion, it suffices to show
that the set

N
Z ={x €| Ze arhx)| > N(log N)*% for infinitely many N}
k=1
has dimension at most d — 5 Here e(6) denotes 7%,
Let
Ny = [e(r?)
Then
1
Nr+171§ exp((rl—f—l)z) 1 < %
N, exp(rz) — 1
Suppose N is a large positive integer with
N 1
e(aghz)| > N(logN)™ 2,
k=1
say
N, <N < Npq1.
Then
N
Z e(aghz)| > - —(N-N,)
KN, (log N)z
N,
- 1 (NT-H N, )
(log N,.)z
1
(o)
(log N,)2
N,
(log N,.)2
since (log N,)~2 > r~4. Hence
N, N
Z C{z€[-K,K]* (arhx) " for infinitely many r}
Pt (log N,.)z

Here
N,
- N,
E =<{=z¢ Ze (aghz) T
st 2(log N,.)2
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We now apply Lemma 1 with J = [~ K, K]%,
N, 2
F(x) = Z e(aghx)
k=1
N, N,
= e((ar — a;)hz),
k=11=1
N, N,
oOF gL
D Z Z 2mi(ag — ar)hje((ar — ar)hx)
i ==
< C\NP*2,

where C; = C1(h,8) > 1. Take A = C;NP*2 ¢ = N2(4log N,)~!, so that ¢ < 2Ad
as required. With Cy = Cy(0, K), we have

/F(x) dx < C3N,log N, = B.

To see this, suppose for example that hy # 0. Then

K NT‘ N)" K
/ dxy . .. dwd/ F(z)dz,| < (2K)d71 Z / e((ax — aj)hiz1) doq
[-K,K]9=1 -K k=1 =1 |/~ K
Nkl
< (2K)%N,
(2K)'N, +2) py—
k=1 I=1
N, k-1
2 1
< (2K)¢N, + = —
o —1
k=1 I=1

< C3N, log N,..

Finally, let 0 < e < ﬁ and take

1
v =d— —+2e.
p

By Lemma 1, we can cover E, with boxes I,1,...,Iq, ¢ = q(r) such that

N2 y—(d+1)
> D(In0)" <asn Nrlog N (NPF2)4 {} .
=1 log N,

Hence
q
N D(Ly)" < Npitioee
=1

for large r. The exponent of N, here is negative and so

oo q(r)

Z D(I.¢)" < .
=1

r=1
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By choosing m large, we cover | J)-  E, with boxes {I, : 7 >m, 1 <1 < q(r)} for

which the sum -
oo q(r)

Z Z D(IM)’Y

r=1 [=1
is arbitrarily small. These intervals cover Z, and so Z has dimension at most ~.
The theorem follows at once. [

2.2. Proof of Theorem 2.

For any non-empty subsets A, B of R,
dim(A x B) > dim A 4+ dim B
(Falconer [13, Corollary 5.10]).

We may suppose that d > 2. Now
EY(s) D BEY(s) x UL,

For suppose that (z1,...,24) ¢ E%S). We claim that z; ¢ E*(S). Indeed for
I1CU,

1 1
NﬂNJJQ:aﬁﬂNJxU*ﬂ@h“wu»—MMUXUWU:mﬂD

as N — oo.

Now let p > 1 and let S be the sequence satisfying (1.2) for which
1
dim E'(5) =1 — -
p
constructed by Ruzsa [25]. (We may choose any § with a; = O(k) for p = 1.) We
have
dim E4($) > dim(E(s) x U?™1)
> dim E'($) + dim U?!
1 1
—1--4+d-1=d—-.
p p
Since we know already that dim F4($) < d — %, Theorem 2 follows. [

It is interesting to observe that in Lemma 1, the exponents attached to B, A, c
cannot be improved in the following sense. If there are constants e, ... es such that
the left-hand side of (2.1) is always

<<d BﬁlAez—Gs’Yce4’Y—€5

the we cannot have e; <1, e3 <d,e3 >1,e4 <1, e5 > d+ 1 unless equality holds
in all five cases. Otherwise we could clearly obtain a better bound than d — % for

dim E4(S), in contradiction to Theorem 2.
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3. PROOF OF THEOREMS 3 AND 4.

Lemma 2. Let € > 0. Let f be a real function on [a,b]. Suppose that f(™ is
continuous and

IF) =1 (a<t<b)

After excluding 2™ — 1 pairwise disjoint intervals of length < Qe from [a,b] we
have

(3.1) lf(t)] = e
Proof. By making a sign change if necessary, we may replace the hypothesis by
(3.2) fM) =1 (a<t<b).

We prove the assertion (for all f, €) using induction on m.

For m =1, f is strictly increasing, and
{t €la,b]: —e < f(t) < e}
is an interval I (possibly empty). Say I = [u,v]. The mean value theorem yields

min f(2)(v - u) < f(v) - flu) < 2

z€la,b]

giving v — u < 2¢ as required.

Suppose the assertion has been proved for all f, €, with 1,...,m — 1 in place of
m. Let n = ¢'/™. By the case m = 1, (3.2) implies

‘f‘m_”(t)‘ >

after excluding an interval I of length < 27. Let I be one of the intervals comple-
mentary to Iy in [a,b]. Then g = n~'f has

‘g(mfl)(t)‘ >1 on I.

By the case m — 1, after excluding 2™~ — 1 pairwise disjoint intervals in I, each
1
of length < 2(5)7-1 = 2¢!/™ we have

l9(t)] =

)

ASHG

that is, |f(t)] > e.

Thus after excluding Iy and 2(2™~! — 1) = 2™ — 2 other intervals of length
< 2eY/™ in [a,b]\ Iy, the whole family of 2" — 1 intervals having pairwise disjoint
interiors, we have (3.1). After adjusting the endpoints of abutting intervals, this
completes the induction step and proves Lemma 1. ([

By considering the example f(t) = %, it is easy to see that the lemma is sharp
for given m apart from the value of the constant 2™ — 1.
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Lemma 3. Let 0 < e <1, m > 2. Suppose that f is a real function on [a,b] with
bounded (m + 1)-th derivative. Let

C:max{’f(j)(t)‘: a<t<hb, 2§j§m—|—l}.
Suppose further that
max {|f/()],...|f"™ W} =B onlab]

After excluding at most
C(b—a) 1

pairwise disjoint intervals of length at most Qem=1 from [a,b] we have

Be

(3.3) FOl= =

Proof. We divide [a,b] into {@] + 1 pairwise disjoint intervals Iy, I3, ... of
length < g. At the midpoint of I, there is a j = ji, 1 < j < m, with

‘f(j)(t)) > B.
By the mean value theorem, |fU)(t)| > B/2 in Ij,. If j > 2, we find that

2/
%=

on I, after excluding at most 2™~ — 1 intervals of length 2¢/G—1) < 2¢1/(m—1),

this is an application of Lemma 2 with 2 j — 1 in place of f, m. The lemma

B

follows on summing the total number of excluded intervals contained in those Iy,

with j, > 2. O
In the remainder of this section, C,Cs, ... denote positive constants depending

only on h, S and on the function z(.) = (z1(.),...,za(.))

Lemma 4. Make the hypotheses of Theorem 3. Let h € Z%, h # 0,

(3.4) F(t) = ha(t).
Then

max {|f'O)],....|fPWI} =1 onlab.
Proof. Fix t € [a,b]. We have

so that, writing
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we have
L < max((h . hal) < max (legs (8)] + -+ lea(t) ) max |19 (1)
< ) ‘
< Cpmax ’f @
since the determinant det A(t) is bounded away from zero. (]

Lemma 5. Make the hypotheses of Lemma 4. Let
2

Fy(t) =

)

N
Z exp (arhz(t))
k=1

then
b

Fy(t)dt < CsN* 4 (log N)'/%,

a

Proof. Define f(t) by (3.4). Let

log N\ ‘7"
og
A= .

By Lemmas 3 and 4, we may partition [a, b] into intervals I3,...1;, J1, ..., Jx with
[<k+1<(C4and

1l =csn (el Jn),

m(J;) <22A@T  (1<i<k).

Trivially,

Now

N
/1. Fy(t)dt = Nm(I;) +2Red > /1 exp((ar — aj) f(t)) dt

=1 1<j<k
Z 1 1

< Nm(I;)+8

< Nm(I;) + Z Z ar — a; P ()]
k=1 1<j<k

(by a standard lemma,; see [27, Lemma 4.2]). Thus

N
1 1
/FN(t)dt<06 N—Fag E r_]

I; k=1 1<j<k

Nlog N
A

The lemma follows on assembling these upper bounds. (I

< Cy = C7;N?7 i (log N)'/?,
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3.1. Proof of Theorem 3. By Weyl’s criterion, we need only show for fixed h €
ZF, h # 0 that

(3.5) lim — Zexp (hx(t)) =0

N—oo N

for almost all ¢. Let Fy(t) be as in Lemma 5. According to (a slight variant of)
a theorem of Davenport, Erdos and LeVeque [9], a sufficient condition for (3.5) to

hold a.e. is
o b
> N*B/ Fy(t)dt < oo
N=1 a

We complete the proof on an application of Lemma 5. [

3.2. Proof of Theorem 4. Let
1 L + 2
= _ — €
Yy pd )

where 0 < € < ﬁ. As in the proof of Theorem 1, it suffices to show that

zW = {t € [a,b] : > N(log N)~'/2 for infinitely many N}

has dimension at most v. Here h is a fixed nonzero element of Z¢.
Just as in that proof,

71) C ﬁ

where

Z exp(aghx(t

We apply Lemma 1 with 1 in place of d, and

Ny
F(t) = > exp(aghz(t))
k=1

Nr -

= 2mi (ar, — a;)ha'(t) exp((ag — ar)hx(t))
k=1 I=1

Eﬁl):{te [a,b] :

N,
” QlogN,)'72

2

2

< CgNP*H2,
Thus in Lemma 1 we take
A=CgNP2 B =CyN2"d(log N,)/4

(recalling Lemma 5) and
N2
~ 4log N,
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We can cover Eﬁl) with intervals 1,1, ..., Iq, ¢ = ¢(r), such that

! 2—1 / N2 7=2
LY N~ 4 (log N,)"/(Cg NP2 1= r :
;\ 1|7 < Cy (log N,.)*/*(CgNE™=) 1log N,

Hence

q
Z 14" < Np—1/d=py+e
1=1

for large r. The exponent of N, is negative. Just as in the proof of Theorem 1,
dim ZzM < v, and the theorem follows. [

4. PROOF OF THEOREM 6

This is rather similar to Kahane’s argument. That argument is in turn adapted
from Kahane and Salem [17]. In [17], S is arbitrary, and B(S) is shown not to
support a positive Borel measure with Fourier-Stieltjes coefficients vanishing at
infinity. We require two standard lemmas. For a subinterval I of U, write

81(@) = {1 if {a} €1

0 otherwise.

Lemma 6. Let L be a natural number. For any subinterval I = [a,b) of U, there
is a trigonometric polynomial

L
T(x) = Z crexp(lx)

I=—L
satisfying
(4.1) T(x) < @s(x),
(4.2) co=m(l) — b
. 0 — i3 + 17
(43) el < min (e bm(n)) (1£0)
. min [ —, —— .
al= o L+1 "
Proof. This is obtained by combining Lemma 2.7 and (2.20) of [5], supplemented
by the inequality |sina| < |a]. O
Lemma 7. Let x1,...,x, be distinct points of U. Then
1 N u 2 u
. _ 2
ety 3 [Sonenten| =S

Proof. Let p be the measure on U given by
pE) = b
T ER
According to Wiener ([18], p. 42, Corollary),
N

dm gy O A6 = P

-N
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The lemma follows at once.

15

d

4.1. Proof of Theorem 6. Let r be a natural number and 0 < 8 < 1. We first

obtain an upper bound for the cardinality of the
there exists a subinterval I of U with
Z(N,I,x)
SASMELED) I) —
2 <) -
We may suppose H(r,3) is nonempty. Let xq, ...,
Fort=1,...,u let I; be an interval such that

<

N

set H(r,3) of x in U for which

(N = 7).

x4, be distinct points of H(r, 3).

S (arze) < N(m(L) ) (N >7)

k=1

Let T;(x) be the trigonometric polynomial in Lemma 6 with I = I;, L= [%} ,

L

Ty(x)
I=—L

then for given t and N > r,

Z ci(l) exp(lz).

N
N( (I;) — L+1> +Z ce(1) exp(lagzy)
k=1 o<|l|<L
N
=Y Tu(arz;) < N(m(I;) - B)
k=1
Since 7 < 8
N
N
Z ci(D) exp(lagxs) < 776,
k=1 0<|l|<L
and summing over t,
N u
Nu,
(4.4) Z ce(D) exp(lagzs) < — Zﬁ
0<l|I<L k=1 t=1
for N > r; so that
N u
Nu,
(4.5) Z ci(l) exp(lagxs)| > 26.
o<|l|<L | k=1 t=1
For I counted in (4.5), Cauchy’s inequality gives
2
(4.6) Z ) exp(lagxy) NZ Z ) exp(lagxy)
k=1 1=1 k=1 |t=1
CLN u 2
<N Z Z (1) exp(szy)
s=—CLN |t=1




16 R.C. BAKER, R. COATNEY, AND G. HARMAN

whenever N satisfies ny < CN. The last expression in (4.6) is
< (24 €CLN*Y |e ()
t=1

by Lemma 7 if, in addition, N is sufficiently large. Comparing this with (4.5), we
find that

w 1/2
(4.7) %s > @cn)'? (Dct(m?) :

0<|lI<L t=1

since € is arbitrary.

Recalling (4.3),

u 1/2
> ( Ct(l)|2> < 3u'/?log(eL),
1

0<|l|<L \t=

so that (4.7) yields
? < 3(2C Lu)/? log(eL),

and indeed
|H(r, )] < 144C'log®(2¢/B)3 .
Since H(1,8) C H(2,0) C ..., it is clear that

(4.8) U H(r,B)| < 144Clog® (2¢/8)87°.
r>1
For z € Bs(S), there is an interval I and an integer r such that
Z(N,I
ZINL2) oy _ste (N>7).
N
Hence

(4.9) Bs(s)c |J H(r.o—e).
r>1

Here € is arbitrary, 0 < € < 0. Theorem 6(i) follows on combining (4.8) and (4.9),
and letting € tend to 0.

Now let z1,...,2, be distinct points of H(S) (if it is a nonempty set). We
return to our basic inequality (4.4), in which we now have

=1, «)=cl), B=m),
and recalling (4.3),
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Thus

N u
N
Z c(l) exp(lagxs)| > Tuﬁ
0<l|I<L k=1 t=1

Write

do= > ),

apl=s
0<|l|I<L, k<N

fs = Z 1.
apl=s

0<|l|<L, k<N

Clearly |ds| < %,st. Suppose that N satisfies ny < CN. We have

Z idsexp(sxt) > Nzuﬂ.

|s|<CLN t=1

Cauchy’s inequality gives
2

- 1
(4.10) Z |ds|* Z ZQXP(Sxt) 21N2u262.
[s|I<CLN |s|<CLN [t=1
Now
9
Z |ds|2§1ﬂ2 Z f2.
[s|<CLN |s|<CLN

This last sum is simply 2M, where M is the number of solutions to

lap, = ma, 1<, m<L, 1<k, r<N.

17

A trivial bound for M is NL?. We can obtain a different bound by noting that
for fixed I, m we must have ap = 0(modm/(m,l)) and there are < CN(m,l)/m

solutions to this. This yields
(m, 1)

M<CN
1§l,Zm:§L m
L 1
<0de(d) > L
d<L m<L/d

gCNLZ é Z %

d<L ~ m<L/d
< CNL(log(eL))?,

and

N | ©

* min (NL?, CNL(log(eL))?) .

Dl <

|s|<CLN
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As for the other factor on the left-hand side of (4.10), we have

u 2
Z Z exp(sxy)

< (24 €)CLNu
ls|<CLN [t=1

for sufficiently large N, by Lemma 7. We conclude that
18(2 + €)Cu(LN)?min (L, C(log(eL))?) > (Nu)>.

Since e is arbitrary, this gives the stated result. [
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