THE ZEROS OF A QUADRATIC FORM AT SQUARE-FREE POINTS

R. C. BAKER

ABsTrRACT. Let F(xi,...,x,)be anonsingular indefinite quadratic form, n = 3 or 4. Results
are obtained on the number of solutions of

F(xi,...,x;,)=0

with xp, ..., x, square-free, in a large box of side P. It is convenient to count solutions
with weights. Let
- 2 x
REw= > u (x)w(P)
F(x)=0

where w is infinitely differentiable with compact support and vanishes if any x; = 0, while
1200 = (3l -p (xl)-
It is assumed that F is robust in the sense that
detM; ...detM, # 0,

where M; is the matrix obtained by deleting row i and column i from the matrix M of F.
In the case n = 3, there is the further hypothesis that —det M;, — det M, —det M3 are not
squares. It is shown that R(F, w) is asymptotic to

en0oo(F, w)p" (F)P" 2 log P,

where ¢, = 1 forn = 4, ¢, = % for n = 3. Here 0w (F,w) and p*(F) are respectively
the singular integral and the singular series associated to the problem. The method is
adapted from the approach of Heath-Brown to the corresponding problem with xp, ..., x,
unrestricted integer variables.

1. INTRODUCTION

Let F(x) = F(x1,...,x,) = 2 a;jxix;j (a;j = aj;; € Z) be a nonsingular indefinite
ij=1
quadratic form, n > 3. Let M = [a;;], D = det(M). We are concerned here with the

asymptotics of the square-free solutions x € Z", of
(1.1) F(x) =0.
As in [1]], let
Ty =yiyn (¥ €RM.

For x € 7", let

Oifr, =0

plxil) ... plxal)  if e # 0.
A square-free solution of (I.I) is a solution having u(x) # 0.

Solutions of (I.I)) will be weighted, as in [I]l, by a function w(}‘;), where the positive
parameter P tends to infinity. We assume throughout that

p(x) =

(i) wis infinitely differentiable with compact support;
@i1) w(x) = 0 whenever 7, =0,
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2 R. C. BAKER

(iii) w(x) = 0, and w(x) > 0 for some real solution x of (I.1).
Our object of study is
x
R(F,w) = : (—)
(Fow= ) wow(3
F(x)=0
An asymptotic formula for R(F, w) was obtained in [1] in the cases

(@) n>5,
(b) n=4; D not a square.

The method used was an elaboration of that of Heath-Brown [4], whose objective was
to obtain an asymptotic formula for

- X
N(F,w) = F%;()W(P).

Besides the cases (a), (b), Heath-Brown also successfully treated N(F, w) in the more dif-
ficult cases

(c) n=4; D asquare,
(d) n=3.

In the present paper, I treat R(F, w) for the cases (c), (d). Some restrictions are imposed
on F.

Let M; be the matrix obtained by deleting row j and column j of M. We say that F is
robust if

(1.2) det(My) ... det(M,) # 0.

Our results will apply to robust forms, with a further restriction when n = 3.
In order to state the asymptotic formulae, we define the singular integral by

1
Ow(F,w) = lim —f w(x)dx,
e—0* 2€ |F(x)|<e

where f ...dx denotes integration over R” with respect to Lebesgue measure. Under the
conditions (1)—(iii), o (F, w) is positive ([4], Theorem 3).
The singular series for our problem is

p (F) = ]—I(l - %)pp-

p

Here p, is given by

pp = lim p""ViHx (mod p¥) : F(x) =0 (mod p”), p> t x1,..., p> 1 xn}.

V—00

Thus p,, is the p-adic density of solutions of F' = 0 ‘square-free with respect to p’.
Theorem 1. Let n = 4, let D be a square and suppose that F is robust. Then
R(F,w) = 0o(F, w)p*(F)P*log P
+ O(P* log P(loglog P)~'*€).

As usual, € is an arbitrary positive number, supposed sufficiently small. Constants im-
plied by ‘O’ and ‘<’ may depend on F, w and €. Any other dependence will be shown
explicitly.
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Theorem 2. Letn = 3 and suppose that F is robust. Suppose further that none of — det M,
—det M,, —det M3 is a square. Then
R(F,w) = % O w(F,w)p*(F)Plog P
+ O(Plog P(loglog P)™'/%).
The following propositions give information about p*(F).
Proposition 1. Let F be nonsingular (if n = 4) and robust (if n = 3).
(a) if pp > 0O for every prime p, then p*(F) > 0.
(b) if the congruence
F(x)=0 (mod (2D)°)
has a solution with p2 1 xg,... ,p2 1 x, whenever p|2D, then p*(F) > 0.
Proposition 2. Ifn = 3 and F is not robust, then p*(F) = 0.
As an example for Proposition 2] it is a simple exercise to show that
P< #x:ux)#0, P<x;<2P, Fo(x) =0} < P

for the ternary form Fy(x) = 2x;x, — 2x§. The conclusion of Theoremclearly extends to
Fy! In fact, I conjecture that for a non-robust ternary quadratic form F and a given w, there
is an asymptotic formula

R(F,w) ~ c¢(F,w)P

with c(F,w) > 0, precisely when w > 0 at some point of a certain set E = E(F) of zeros of
F. In the example,

E={tt+1):t+#0}

Before outlining the proofs of Theorems|I|and[2] we recall some notations from [1]] and
[4]]. We write, for ¢ € Z",

q
Sqr(@) =Sge)= > > e aFb)+c-b).
a=1 b (modq)

As usual, the asterisk indicates (a, g) = 1, while
2if m
c-b=cb+---+cyb,, e®) =e", e,(m)= e(—).
q

The symbols d and ¢ are reserved for points in Z" with positive square-free coordinates.
Let

Fa(x) = F(d3xy,...,d*x,)
and similarly for wy(x). We write
Sqd,c) =S ,r,(c).
It is convenient to write d | m as an abbreviation for
di|\m,...,d,|m.

Further, let
Iyl = max(|yil,.. ., [yal).
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Let h(x,y) (x > 0,y € R) be the smooth function that occurs in Theorem 1 and 2 of [4].
We recall that h(x, y) is nonzero only for x < max(1,2[y|). It is shown in [4, Theorem 2]
that

N(F,w) = cpP> Z Z q7"S J(©)1,(c),

ceZ" g=1
where
(1.3) cp =1+ Oyn(P™N) forevery N > 0,
and
x\ (g Fx)
L) = I,(¢) = f W(;)h(;, = )eq(—c - x)dx.

Clearly I, r,,(c) is nonzero only for g < P.
As noted in [1]],

1 ci Ch
(1.4) Iy paueg(€) = —Iq(—,...,—).
a ny T \d? d?
Thus
_Cp > Sq(d,(f) Cl Cy
(1.5) N(Fa,wq) = o Z Z pr b Ree ¢
cezr g=1 1

Let

1
z=2zP) = 7 loglog P,
0@ = ]r
<z
Forx € 7", n, # 0, let
1 ifp*tx;forp<zandj=1,...,n
fz<x>={ A /
0 otherwise.

It is easy to verify that

£(x) > 12 (x) = fulx) - Z - = Z 1.

p2z P2z
Plx Pl

Multiplying by w (%) and summing over x € Z" with F(x) = 0,

x x
(1.6) fwl|—=)=R(F,w) > fow(—
2 s (3) 2 som(3)
—($1@+ -+ 5,2).
Here
(1.7) s0= Y w(%).
pX, p*lx;
F(x)=0
We note that
Fa= D Y ),
2| x d2|x,

d10@  dnlQ@)
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so that
X X
(1.8) > rww(E)= Yow(E) Y w@
F(x)=0 F(x)=0 X1 | 3
d|0()

= . HANFg,wa).
d|0@)

We can express S ;(X) somewhat similarly. Take for example j = 1 and write d(p) =
(p,1,...,1),

Fp=Fap)» Wp = Waep)-
Then
(1.9) S1X) = > N(F,, wp).
p=X

Our plan is to adapt [4] so as to evaluate N(Fg4, wy) via (I.3), making the error explicit
in d, and then apply this to the last expression in (I.8) and to N(F,,w,). The contribution
to S'1(z) from p > P€ will receive a more elementary treatment, similar to [[1, Proposition
1].

In conclusion, I point out a refinement of a theorem in [[1]] due to Blomer [2]. Let R(m)
be the number of representations of m as a sum of 3 squarefree integers. If the square-free
kernel of m is at least m°, for a positive constant §, and m = 1,3 or 6 (mod 8), then Blomer
obtains

(1.10) R(m) = coo S(m)m'? + 0m"™/%), y = y(6) > 0.
Here ¢, is the singular integral and S(m) the singular series,
m ¢ < G(m) < mt.

In [1]], (L.I0) is obtained only for square-free m.

2. SOME EXPONENTIAL INTEGRALS, EXPONENTIAL SUMS AND DIRICHLET SERIES

From now on we assume that n = 3 or 4, and the determinant of F is a square for n = 4.
It suffices to prove Theorems[T|and 2] for weight functions w with the following property:
there exists a positive number ¢ = ¢(F, w) such that, whenever (xg, y) € supp(w), we have

F
oF (xy)>1 (x—x|<¢)
ox

and F has exactly one zero (x, y) with |x—xg| < €. We shall assume that w has this property.
The deduction of the general case of Theorems|[I|and2]is carried out by a simple procedure
given on page 179 of [4].

As noted on page 180 of [4],

2.1 L,w)=P'I:(v) (r=P'g),

where

(2.2) I'(v) = f w(Oh(r, F(x))e,(—v - x)dx.
Rll

For v = 0, we have

(2.3) I:(0) = oo (F, w) + On(™)

for any N > 0, provided that r < 1 [4, Lemma 13]. Consequently
(2.4) 1,(0) = P"{oe(F, w) + On((g/P)™))
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forg < P.
By combining the conclusions of [4, Lemmas 14, 15, 16, 18, 19, 22], we arrive at the
following bounds:

(2.5) L) <1,
I*
(2.6) r w <1,
or
.7 1,(v) < P,
ol
(2.8) q «(©) < P,
dq
(2.9) roy<yr'p™ (N21)
(2.10) L) <y P ™ (V2 1),
(2.11) L) < (2 wDee" w2,
2 € 1-n/2
(2.12) L) < P”(P—lzv|) (M) ,
q q
d P2\ (Pl T
Lemma 1. Forany K > 1,
(2.14) f i wydr < K (v > 1),
0
T 2
(2.15) r I (w)dr < log o (v < 1),
0
(2.16) f g 'L, wydg <y PP (v > 1),
0
“ -1 n 2
(2.17) q '1,(v)dg < P"log o (v < 1).
0

Proof. In view of (2.1)), it suffices to prove (2.14) and (Z:13). Suppose first that [v| > 1.

We use (2.T1) for the range .
r<pl”

and (2.9) for the remaining range. Thus

N/2

00 v|~
f r_]I:(v)dr < |v|5+1_”/2f 212,
0 0

+ ™ f r2dr
V72

< |v|e+]—n/2—N/2(n/2—26) + |v|—N/2

< pI¥
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for a suitable choice of N = N(K, €).
Now suppose that [v| < 1. We use (2.TT)) for the range r < |v|, (2.3) for the range

Wl <r<yl™,

and (2.9) with N = 1 for the remaining range. Thus

o vl
f r ' L ydr < |2 f ey
0 0

[~ =
+ f rldr + |v|_1 f r2dr
vl v|-!

1

2
< "¢ +2log (m) +1 < log (m)

We now turn to estimates for S ,(d, ¢). Let My be the matrix

My = [d}dja;j).

Thus
det(M))™!
2.18) det My = 7 det(M), detM;" = %
d

Writing M~ = m[bij], so that b;; € Z, we note that

bi;
(2.19) M;lz—l —=1.
det(M) | d2d>

We write M;l(x) for the quadratic form, with rational coefficients, whose matrix is M‘;l .
Let A = 2|det M|. When p { m4A, we may think of M;l(x) as being defined modulo p.
We recall that, for any nonsingular form F,

(2.20) Sqd.c) < q"""*(d}.q)...(d).q)

[1, Lemma 9]. We need a slight generalization of (Z.20). Let c(a) be a vector in Z" for
everya=1,...,q,(a,q) = 1. Let

q
Sa= Z Z e (aFq(b) + c(a) - b).

a=1 b (modq)
Then

Sa< g™ (d},q) ... (d%q).
To see this, Cauchy’s inequality yields

q
Sa? <o@) Y. > eglaFa) - Fa®)) + c(a) - - v)).

a=1 uy(modgq)
Substitute u = v + w, so that
ej(a(Fa(u) — Fa(v)) + c(a) - (w —v))
=ey (aF(w) + c(a) - w) e (av - VF(w)).
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The summation over v will now produce a contribution of zero unless g divides VF4(w) =
2Maw. We have
Sa? <q'¢@® > L

w (mod q)
2Mgw =0 (mod q)

We may now complete the proof with the argument used for [1, Lemma 9].
Since

2.21) Sw(d, ¢) = S.(d,v¢)S (d, iic)

where uit = 1 (mod v), vv = 1 (mod u) [4, Lemma 23], we can do most of our work for
prime powers g.
Forn = 4, M}'(c) # 0, we have

(2.22) Z IS ,(d, ©)] < 72X+ (le| + 1)¢

g<X

[1, Lemma 10]. To get results that play a comparable role when n = 4, M;l(c) = 0or
n = 3, we use the Dirichlet series

l(s,d,¢) = Z GS,(¢) (o >2+n/2)

g=1

- n { i PSS pu(d, c)}
p

u=0

[4, p. 194]. Bounds for those Euler factors for which p|m; will require extra work com-
pared to the analysis on pages 194-5 of [4]]. If we write

(2.23) ra(e,0) =[] D, p™IS pld, e,

plrg u=0

we see that the analysis in question gives

(i) forn = 3, M(;l(c) #0,

(2.24) L(s,d,c)=L(s—2,xa.)v(s,d,c)

where
vis,d,e) = [ —xd,c(p)pz‘“‘){ DS p“(c)},
u=0

and yg4. is a character satisfying
- det(Md)M‘;I(c)]
» .

We note that y 4, (if not trivial) is a character to modulus 4A7rfi | M‘;I (¢)|. Moreover,

(2.25) Xae(p) = (

(2.26) v(s,d, ¢) < |e[Ta(c, o) (a > % + e).

(ii) for n = 3, M;'(c) = 0,

(2.27) L(s,d,c) =25 —5)v(s,d, ),
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with
v(s,d,c) = ]_[(1 - pHS){ Z P8 pu(d, c)},
P u=0
Moreover,
17
(2.28) v(s,d,c) < t4(c,0) (0‘ > g + 5) .

(iii) for n = 4, M;'(¢) = 0, we find that
{(s,d,c) = L(s — 3, xq)v(s,d, c),
where .
v(s,d,e)=[ a1 —Xd(p)p“){ DS pd, C)},
u=0

P
with a character y4 satisfying

det M,
xa(p) = ( ") .
Since det My is a square, we take the trivial character, and write
(2.29) {(s,d,c) = (s —3)v(s,d, ).
Moreover,
7
(2.30) v(s,d, c) < t4(c,0) (0' > 3 + E).

For any d, we write ¢; = t;(d) for the product of those primes dividing exactly j of
di,...,d,. Evidently,
mg=tt5.. .1
We also write
2 (1) (n=4
d ‘2 \!344 n= )
(2.31) A(d) =
e (n=3).
Let us write a3 = 17/6, as = 7/2.
Lemma 2. (i) Let F be nonsingular. Then

T4(c,0) < 7T‘21+E (o >a,+e).
(ii) Let o > n — €. Suppose that F is nonsingular (if n = 4) and robust (if n = 3). Then
T4(c,0) < A(d).
Proof. (i) For n = 3, (2.20) yields
S u(d,
e ) <
pa’u
IS u(d, c)]|
e ), = <P P ),

ou
u>1

p L, ph3, P, ),

tae,0) < 75 | |} PN, PPN )

plmna

_ . 2+e€
—7Td .
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The argument is similar for n = 4.

(ii) For n = 4, (2.20) yields

S u d C
(2.32) 1+ Z u <1+ p 9, p)...(d3, p)
u>1 p
+p 229}, p?) -+ (d5, pP).
If p divides ¢;, then

S «(d,c
1+ Z # < p*.
u>1 p
If p divides 1,, then
S pu d,C
1+Z | P( ) <<p2+25.

uZl pO’L{
If p divides t3t4, then
S u d,c
1+Z IS p ((m )| <« p4+4e +ZP8—(1fe)u < p4+4€'
u>1 p u=5

Here we use the trivial bound (« < 4) and 2.20) (u > 5). Lemma 2{(ii) follows for n = 4.
Now let n = 3. Suppose that p|#;; let us say p|d;. Then for u < 4, and a fixed value of
X1, let us write

3

20
G(xp,x3) = Z ajkdjdkxjxk,
k=2

h = h(a) = (aalzdfd%xl + ¢, aa13dfd§x1 + ¢3).
We have
3
aF (x)- ¢ = aG(x2, x3) + Z aalkd%d,fxlxk +x-c
k=2

= xic1 +aG(xp, x3) + (x2,x3) - b (mod p"),

p
D7D e@Gy) +y-h

a=1 y (modp")

2

p
1S pe(d, ) < p* Y

x1=1

(by Cauchy’s inequality)
< p2u ( p2u )2

by the generalization of (2.:20) noted above, with n replaced by 2 and F replaced by
F(0, x2, x3). Hence, applying (2.20) directly for u > 5,

1+ Z 1S, p(d c)| b+ sz u(-e)

u>1 u=5

< p*e.
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Now let p|t,. Then

Spu(d, L') p2+2€ (l/l < 2)
(2.33) —_ <

p(ru p4—u(1/2—e) (I/t > 3)

Here we use the trivial bound (# < 2) and (2.20) (# > 3). Hence

1+Z IS pe(d, ©)| « pole,
po'u

u>1

Similarly, if p|t;,

S yu(d, ¢) P (u<4a)
—_— < ]
P PG (> 5),

S (d,c
1+ Z | p ( )l < P4+4€~
pD’M

u>1

We now complete the proof as above.
The next lemma is useful for singular series calculations.

Lemma 3. Let F be nonsingular,

Ap(F) = D" > p™IS (d, O).

dlp ux1
mqg>1
Then
2 .
(n = 4, F nonsingular)
A,(F) < P §
p’3/2 (n = 3, F robust).

If n = 3 and F is not robust, then A ,(F) < pL
Proof. Suppose first that n = 4. The proof of Lemma 2] (ii) shows that, for d | p,

1 (ma=p)
D IS pd Ol <SP (ma = p?)
uzl pt (mazpd).

Hence
72 pIS p(d, 0) < p 2,

u>1

and we obtain the desired bound since d has O(1) values.
The argument for n = 3 is similar in the case when F is robust. However, if F is not
robust, we have the weaker bound

(2.34) DTS pd Ol < p (24 = p).

u>1

For the left-hand side of (2.34) is
< p 2(d}, p)(d;. p)(d5, p) + p~(d}, pP)(d5, pP)(d5, pP)

from (2:20).
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3. Sums oF S4(d, ¢) anp S,(d, 0)g™".

Lete,=1ifn=4ande, =1/2ifn = 3.
We assume throughout Sections 3 and 4 that F is robust (n = 3) and nonsingular (n = 4).
Define
e, if M;l(c) =0
(3.1 nd,c)=41 ifn=3and —(det Md)M‘;I(c) is a nonzero square
0  otherwise.
Define
o(d,c) =v(n,d,c).
We observe that whenever 7(d, ¢) # 0,

old,c) = l_[ o,(d,c),
p

where

opde)=(1-ph) Z pS pu(d, ).
u=0

Lemmad4. For X > 1,

Xl’l
2. Sa(d.e) = n(d.)r(d. e) — + OX " (1 + e])'").

g<X

Proof. The case n = 4, M;l(c) # 0 follows from (2.22)), and we exclude this case below.

We recall the version of Perron’s formula given in [, Lemma 13]. Let b, ¢ be positive
constants and A a real constant, A + ¢ > 1 + b. For K > 0 and complex numbers a; (£ > 1)
with |a,| < K€°, write

hs) =y Y (o> 1+Db); then

=1 e
(32) S L e n S s o KX
’ €4 - 2mi c—iT N T

{<x
whenever x> 1, T > 1, x—1/2 € Z.
Forn=4,leta; =S¢d,c),b=3,1=0,x=[X]+1/2, T = x'° According to (2.20),
we may take K < 5. Recalling (2:29),

1 S5+iT x2
qu(d, €)= — f (s,d,¢) — + O(x2)
=X 271'1 5—iT S

1 S5+iT

=5 (s —=3)(s,d,c) s+ Oo(r3).
2ri Js_ir N

We move the line of integration back to o = % + €. On the line segments [7/2 + €,5] =i T,
L(s—-3) < TV,
v(s,d, c)x*
—_— <

24e —1/2
. mg T
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from (2.30) and Lemma (). Thus these segments contribute 0(7%“). Since

v 1
f |L(o + it, y)|*dt < k'*U (E <o< 1)
0

for a Dirichlet L-function to modulus &, we have

[,

Hence the segment [7/2 + € —iT,7/2 + € + iT] contributes O(X”/***7%*¢). Writing Res for
the residue of the integrand at s = 4, with Res = 0 if there is no pole,

Z S ,(d, ¢) = Res +O(ny X "/*+%).

q<X

< n5€logT.

{(% + €+ it) v(s,d, c)

dt
1+

Similarly, for n = 3,

1 S5+iT xS
8, e)= — f {(s,d,¢) = ds + O(x2)
= 2 Js_ir s
1 S5+iT xs
= — E(s)v(s,d,¢) — ds + O(),
27 Js—ir s

where
L(s—2,y) if M;l(c) #0
E(s) =
{2s-5) if M(;l(c) =0

and y = ya,. satisfies (2.23). We take y to be the trivial character if — det(Md)Mgl(c) isa
nonzero square. Since y is a character to modulus k = 0(7r3 c[*), a simple hybrid bound
[3l Lemma 1] yields

E(s) = O((kT)"'*)
= O0((1 + e/ 2mgT"*)

foro>11/4,t| <T.
We move the line of integration back to o = 17/6 + €. A slight variant of the preceding
argument gives
D84, ¢) = Res +0 (X"7/O24(1 + Je) 2mye).
q<X
It now suffices to show that the residue at 7 is

X"
n(d, c¢)o(d, c) -

In the case n = 4, the residue is
4

X
v(4,d, c) vy
as required.

For n = 3, there is no pole unless either M;l(c) =0or M;l(c) # 0 and yg4 is trivial,
that is, —det(Md)M‘;'(c) is a nonzero square. The residue is o(d, ¢) gi or %o-(d, c) ’63:
depending on whether the coefficient of ﬁ in the Laurent expansion of the zeta factor is
1or % and the lemma follows.
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Lemma 5. For X > 1,

D1q7"8(d,0) = e,0(d, 0) log X
q<X
+ O(A(d) + 5 eX o +2e),

Proof. For n = 4, we apply (3.2) with a;, b, x, T, K as in the preceding proof, but now
A =4, c=1. This leads to

| 1+iT s
S ,d.0) = — f s+ D(s +4,d,0) = ds + O(x3).
2mi 1-iT S
q<X
We move the line of integration back to o = —% + €. The integrals along segments are

O(r5tX~1/2+2€) by a variant of the above argument. There is a double pole at 0; the
Laurent series of the integrand is

é (I+as+--)(v4,d,0)+v'4,d,0)s+---)(1 + (logx)s + ),
where a is an absolute constant. The residue is
v(4,d,0)(log x + a) +V'(4,d,0)
— o(d,0)log X + O (5222‘6 a0, 0) + 1) .

To get the last estimate, we write v'(4,d,0) as a contour integral on |s — 4| = € using
Cauchy’s formula for a derivative, and apply (2.30). We now complete the proof using
Lemma 2] (ii).

For n = 3, a similar argument gives

3 _ 1
24 Sq(d’o)_zm'f

= 1-i

1+iT s

{Q2s+ (s +3.d,0) = ds + O(n2).
T N

We move the line of integration back to o = —% + €, estimating the integrals along line
segments as O(rr5 <X ~!/**€). This time the Laurent series at 0 is

2_s2(1 +2as+---)v(3,d,0)+v(3,d,0)s +---)(1 + (logx)s+---)

with residue | !
3 v(3,d,0)(log x + 2a) + 3 v'(3,d,0),

and we complete the proof as before.

4. EvALuAaTION OF N(Fg4, wy).

We fix d for the present, with
ld| < P*,

=[]
=l %2l
dy c;

a8 (d, )l (c")

q=1

and write

Lemma 6. We have

< P".

2,

ceZ”
l¢'|>P<
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Proof. We note first that forA > 1,R > 1, N > 2,

00

4.1 Z (cA™YyN = AV Z N
c>AR k=0 2kAR<c<2K1AR

00

< AN Z 9=(N=Dk g=N+1 p=N+1 . g p=N+1
k=0

Taking A = d?, R = P¢, we have

Do@dyN Y

le1|>d? Pe il feal | ©
1 max| 75 ..... ‘d—z‘ S(TIZ
2 n 1
« p2n-De Z (cldl_z)_N+”_1
le1] > d? Pe

< PZ(n—l)Ed%P—(N—n)e < P—(N—3n)e'

Here we allow for a possible renumbering of the variables. If N = N(e) is chosen suitably,
we get the lemma by combining this estimate with (2.10) and ([2.20), on recalling that the
summation over g is restricted to g < P.

Lemma 7. Let|c’| < P¢. Then

4.2) Z q"S (d, e)l,(c') = n(d, c)o(d,c) fo g "I,(c")dq + O(P™*20¢).

gq=1
Proof. Let
T(q) =) Sed.0),
t<q
B=rm (1 +c])'/2.
For R > %,
2R
(4.3) > q7"Sd o)ly(e) = f q"14(cdT (q)
R<q<2R R
2R 2R o
=q"I(T(g)| - o (g"1,(c')NT (g)dq
R R q
, d,c)o(d,c)q" o +2€ 2R
e ){m T O o2 )}
n R
2R g dyo(d,c)q"
_ - (q_nlq(c,)){ﬂ( Yo(d, ¢)q + O(Bqa,,+25)} dgq
R 0q n

from Lemma[] Now for R < ¢ < 2R,

q—nlq(c/) < Pn/2+l+25R—n/2—l ,

0
. (q—nlq(c/)) < Pn/2+1+26R—n/2—2
dq
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from 2:12)), (Z:13). Hence the O-terms in the last expression in (#3) contribute
O(BP"/¥+1+2¢ g=n/2-1+an+2€) Ve conclude that

(4.4) DS d ol =

R<g<2R
2R
T](d, C)O'(d, C) f q—llq(c/)dq + O(BPn/2+1+2€R_n/2_1+a/"+26).
R
The lemma follows because ¢ = O(P) for the nonzero terms of the series in @.2)).

2

le’[>1d]¢

Lemma 8. We have

< P".

D" (d, )l(c)

g=1

Proof. By Lemmal6] we can restrict the sum to
|d| < || < PS.
Let K > 1. Combining Lemma([7] with (Z:16), these ¢’ contribute
<k P' D 1Mo, o) + P
le’[>1d|
<k P Z |cl|—K+6ﬂ,‘21+E + P
le’|>ld|€

by 2.26), (2:28), (2.30) and Lemma [2] (i). The last expression is (arguing as in the proof
of Lemma [6))

<k Pn+2n5ﬂ,§+e Z (cldl—Z)—KJrn—lJre + Pn‘
cr>d> |df
The lemma now follows from an application of @) withN =K-n—-1-¢€ A = d%,
R =d|%; K is suitably chosen depending on €.
Lemma 9. Let
0<|c| < |d.
Then -
Z 47" (d. o)l (') < P"A(d)n(d, c) + P+,
g=1

Proof. In view of Lemma[7]it suffices to show that
o(d, c)f q"I,(c")dg < P"A(d).
0

The integral is < P"log(2 |d|) by 2.16), (2.17) and the simple observation that |¢’| > |d|~2.
The required estimate for o(d, ¢) is provided by 2.26), (2.28), (2-30) and Lemma [2] (ii)
(with €/2 in place of €).

It remains to treat the series

D 478 4(d, 0)1,(0).
gq=1

Lemma 10. We have

q"S 4(d,0)1,(d,0) = e,0(d, 0)0(F,w)P" log P + O(P"A(d)).
gq=1
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Proof. To begin with,
(4.5) D a8 (d, 0)1,(0)

g<P'-¢

= > a7 (d, P T (F,w) + Oy P92 p~eN)
g<p'-¢

(from (2.14) and (2.20))
= e,0(d, 0)0 o (F, w)P" log P'~€ + O(P"A(d))

by Lemma 3] together with an appropriate choice of N.
For the range ¢ > P'~¢, we use #4). Crudely,

(4.6) D a7 4(d 0)y(c)

q>P'-€

=e,o(d, 0)f qillq(O)dq + 0(7r(31+6Pn/2+1+25)'
Pl—e

Combining @.3), (-6), and substituting 7,(0) = P"I(0), where r = g/P, we obtain

4.7) a7 (d.0)1,(0) = e,0(d. 0)0 o (F, w)P" log P
g=1
+ e,0(d,0)L(P~)P" + O(P"A(d)).

Here
L) = 0wl w)log 1+ f I O)dr:
A

It is shown by Heath-Brown [4, p. 203] that L(1) tends to a limit L(0) as A tends to 0, and
more precisely

(4.8) L(1) = L0) + On(A™).

Recalling (2:28), (2:30) and Lemma [2] (i), we see that (4.7) and ([&.8) together yield the
lemma.

Lemma 11. We have

N(Fg,wg) = enn‘f(r(d, 0)o o (F, W)P”’2 log P

+ O(P"2n P A(d)#c - || < |dI5, n(d, ¢) # O)).

Proof.  Combining Lemmas [8] [9] and [T0} and noting that 0 is counted in {c : |¢’| < |d|,
n(d,c) # 0},

Z i q"S,d, o)l d, )

ceZ" g=1
= e,0(d, 0)0(F,w)P" log P

+ O(P"A(d)#{c : |c'| <|dI°, n(d,c) # 0}).
The lemma now follows easily on combining this with (T.3) and (T.3).
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5. COMPLETION OF THE PROOF OF THEOREMS 1| AND IZ.

Lemma 12. Suppose that F is nonsingular (n = 4) and robust (n = 3). In the notation of

(1.7), we have
S1(P) < P".

Proof. In view of (L.9), it suffices to show that
(5.1 N(F,,wpy) < P"*</*p~2,

This is a consequence of [[I, Proposition 1] for n = 4. The proof of that proposition can be
adapted slightly to give (5.1) for n = 3. By following the argument on [I} pp. 107-8], we
see that it suffices to show for 1 < h < P that the equation

ext+7+A55=0
has O(P'*¢/21~1) solutions with
(x,z1,2)l <P, x1#0, x; =0 (mod h).

Here c, A are nonzero integers, since the quadratic form cx} + z] + A,z; is obtained from
F by a nonsingular linear change of variables. There are O(Ph™") choices for x;. For each
of these, there are O(P¢/?) possible (z;,2>) [I, Lemma 1]. This completes the proof of the
lemma.

Lemma 13. Let F be nonsingular. Let
(d)
Bg) =) EF 5,0
dlg "'a

Then

(i) B(q) is a multiplicative function.

. (®) 2

i) Y EFs e0=8@[a-p>r

fow Mt pe:
pr1q

(iii) For all primes p,

L+ (1= p 2™ p™B(p") = (1= p ) 7p,.

u=1
Proof. (i) This is a special case of [I, Lemma 17].
(i1) This is a variant of [[1, Lemma 16]. The sum over ¢ is unrestricted in [/1]].

(iii) This is obtained by letting N tend to infinity in the expression

N
L+ (L= p™)™" ) p™B(p") = (1= p"p "V My,
u=1
where
My =#{x (mod pN) :F(x)=0 (mod pN),p2 )(xl,...,pz 1 x,}
which is (5.9) of [1]]. Convergence is a consequence of Lemma

Lemma 14. Let F be nonsingular (n = 4) and robust (n = 3). We have

d
5.2) Z ’ILZ) o(d,0) = p*(F) + O((loglog P)~").
diow "d



THE ZEROS OF A QUADRATIC FORM AT SQUARE-FREE POINTS

Proof. Let

V(w)=ﬂ(1—%).

p<w

The left-hand side of (53.2) is lim A(w), where

w—00

oy =y /%’) n(l—%)i S,,u;i,m

d|Qiz) “d p<w u=0
S - (d)
=V Y gy £ 5,0
g=1 d|0(2) d
rlg= p<w

(after a simple manipulation). By Lemma (>i1),

hw) = Vow) > qa"B@) | | - i)’
g=1

P1<z

pitq
=vwm [ Ja-p" > c@.
p1<z g=1
rlg= p<w

Here

C@)=g¢"B@ | [ -p™
pia
is multiplicative by Lemma [13] (i), and so
howy = Von [ Ja =i [ Ja+ €+ +--)

p<z p<w

= [la-porT](i-2) (1 a0y, 222
u=1

P1<z p<w

Here

_Ja=-p™ ifp <z
ap(z) = .
1 ifp>z

Letting w tend to infinity, the left-hand side of (5.2) is

1 1 > B(pY)
= (-3 10-5)0-2 52

p<z p=z u=1

|

)
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by Lemma|[I3](iii). This is clearly close to p*(F) for large z. More precisely,

1 1 =
1——]o,=[1-=|[(1=p>H™ s (0
( p)pp ( p)(( PO P p(0)

u=1

H(d) S p(d, 0))

+

;p ﬂj ; pnu
ma>1

1 [e]
=1-—=|[t+) p™s u(())+0(p_(1+c"))
( p)( Z:,: !

by Lemma[3] Now for p 1 2D,

1 S _Jr+op™ =4
(1_5)(”21’ S”"(O))_{1+0<p-3/2> (n=3)

u=1

as shown by Heath-Brown on p. 195 of [4]]; one takes

s_[b =3
I -
L =4
in his argument. We obtain
1
(5.4) (1 - —)p,, =1+ 0(p ).
p
Essentially the same argument shows that
1 — B(p"
(5.5) (1 - —) (1 +) —(fu )) = 1+0(p~*).
p p

u=1

It is now an easy matter to deduce from (5.4) and (5.3) that the expression in (3.3)) is

1
[ (-~ 0
( p)pp+ @™

P

as required.

Proof of Proposition[l] Part (a) is a straightforward consequence of (5.4). For part (b), we
may repeat verbatim the proof that p, > 0 for all p in [}, pp. 130-131].

Proof of Proposition |2l We need only show that

1 k 1
(o A

where £ is the number of j, 1 < j < 3, for which det M; = 0. Arguing as in the preceding
proof, this reduces to showing that

wd) < Spd0)  k !

dp T4 =t
wg>1
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Using unchanged the part of the proof of Lemma 3| with 74 > p?, we find that these terms
contribute O(p~>/?) to the left-hand side of (5.6). A familiar argument also gives, for
ﬂd = ps

S,(d,0) -
Z U e <p l/z(dl,P)(dZvP)(d%P)
u#2 p

+ p~(dy, pP)(da, pP)(ds, p*) < P12,

so that terms with 4 = p, u # 2 also contribute O(p~3/?).

Write dV = (p,1,1),d® = (1, p, 1), d® = (1, 1, p) It remains to show that
57 §,2d?,0)  [p+0p'?) ifdetM; =0

’ o) if det M; # 0.

The case det M; # 0 of (5.7) is essentially the same as the case n = 3, p|#; of the proof
of Lemma (ii). Now suppose det M; = 0. Since M; has rank at least 1, its rank is 1.
Taking j = 1 for simplicity of writing,

r
[JCZ X3] Mj [ii} = E (be + Cx3)2

with integers r, s, b, ¢, rs # 0, (b,c) # 0. For p { s, s§ = 1 (mod p?),

F(p*x1, X2, x3) = r5(bxy + cx3)*  (mod p?).

Hence
L A
S 2 (dP,0) = p? Z Z Z e (ars(bx, + cx3)?)
a=1 x=1 x3=1
PP
=pt Z Z ep(ayz) if p 1 rs(ged(b, ¢)),
a=1 y=1

since bx; + cx3 takes each value (mod p?) exactly p? times. The last expression is evalu-
ated in [4, Lemma 27] as
4.2 _7_ 6
ppp-hH=p -p°,
and the proof of the proposition is complete.

Lemma 15. Let F be nonsingular (n = 4) or robust (n = 3). Then

(5.8) D, H@N(Fa,wa) = e,oa(F.w)p' ()P log P
d|0(2)
+ O(P"21og P(log log P)™").
Proof. From Lemma|[IT] the left-hand side of (5.8) is

(59) x0T o(F,w)P"* log P Z ﬂ(d)fr—z(do)
100 TTa

+ 0(P”‘2 Z 7AW c - |¢') < |d|}).
d100)
The O-term is
< Pn—2 Z n;2+4/3+2+6|d|55
d| Q(z)
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since A(d) = 0(713/ 3+56). Moreover, for given k,

D b < #ld: d| Q@™
d10()

< Q)™+ « 429,
The O-term in (5.9) is thus
< P"2¢% = P"2(log P)°7.
The lemma now follows on applying Lemma|[T4]to the first sum over d in (3.9).
Lemma 16. Under the hypothesis of Theorem([I|or Theorem 2] we have
Z N(F,,w,) = O(P"*log P(log log P)~'*%¢).

Z<p<P¢
Proof. By LemmalT1]
(5.10) N(F,,w)) = e,p 20(d,, 0)0w(F, w)P" > log P

" O(P”‘2p‘2+5€Np).
Here N, is the number of ¢ in the box
Bilal<p™lel<p® 2<j<n)
for which either
(5.11) det(Macp)My/, (¢) = 0
orn =3 and
(5.12) det(Macp)My, (€) = —¢°,

for a nonzero integer g.

Recalling Z:18), (2:.19), we find that

n n
det(Md(p))M(;('p)(c) = bncf + 2p2 Z bljclcj + p4 Z b,’jCiCj,
j=2 i,j=2

with
by = det(M;) # 0.

We see at once that (5.1T)) holds for only O(p*¢) points ¢ in B, since ¢z, ..., ¢, determine
¢ to within two choices.

If (3.12) holds, then
(5.13) 0 = by det Magy M., (€) + bing?

n 2
= (bllcl +P2Zb1jcj) -p't+bugt
=

where

n 2 n
ZI(Zblej) _Zbijcicj~
Jj=2

ij=2
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If ¢ = 0, then —by; is a nonzero square from (3.13)), in contradiction to the hypothesis
of Theorem Q We conclude that the aid of [I, Lemma 1] that for given c;, c3,
determines c¢; to within O(p®) possibilities. Thus in all cases,
N, = 0(p™).
We use this estimate together with (2.28), (Z:30) and Lemma [2] (ii) to deduce from (5.10)
that
N(F,,wp) = O(P"*(log P)p~*%).
The lemma now follows.
We are now ready to complete the proofs of Theorems[T]and 2] From (T.6), (T-8),

R(F,w) = D i(dN(Fa, wa)
d10k)
after a possible renumbering of the variables. Thus

RGFw)= > p(dN(Fa,wa) + O(P"*(log P)(loglog P)™' %)
d|0@)

(from Lemmas [T2] and [T6)
= ,0(F, )" (F)P"21log P + O(P""*(log P)(log log P)™5")
from Lemmal[I3l Here
{1 —8¢ (n=3)
8n =

< nmjaxSi,‘(Z) < nZN(Fp,Wp)

p=z

1/2 (n=4).
Since € is arbitrary, this completes the proof.
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