
THE ZEROS OF A QUADRATIC FORM AT SQUARE-FREE POINTS

R. C. BAKER

Abstract. Let F(x1, . . . , xn) be a nonsingular indefinite quadratic form, n = 3 or 4. Results
are obtained on the number of solutions of

F(x1, . . . , xn) = 0

with x1, . . . , xn square-free, in a large box of side P. It is convenient to count solutions
with weights. Let

R(F,w) =
∑

F(x)=0

µ2(x) w
( x

P

)
where w is infinitely differentiable with compact support and vanishes if any xi = 0, while

µ2(x) = µ2(|x1 |) . . . µ2(|xn |).

It is assumed that F is robust in the sense that

det M1 . . . det Mn , 0,

where Mi is the matrix obtained by deleting row i and column i from the matrix M of F.
In the case n = 3, there is the further hypothesis that − det M1, − det M2, − det M3 are not
squares. It is shown that R(F,w) is asymptotic to

enσ∞(F,w)ρ∗(F)Pn−2 log P,

where en = 1 for n = 4, en = 1
2 for n = 3. Here σ∞(F,w) and ρ∗(F) are respectively

the singular integral and the singular series associated to the problem. The method is
adapted from the approach of Heath-Brown to the corresponding problem with x1, . . . , xn
unrestricted integer variables.

1. Introduction

Let F(x) = F(x1, . . . , xn) =
n∑

i, j=1
ai jxix j (ai j = a ji ∈ Z) be a nonsingular indefinite

quadratic form, n ≥ 3. Let M = [ai j], D = det(M). We are concerned here with the
asymptotics of the square-free solutions x ∈ Zn, of

(1.1) F(x) = 0.

As in [1], let
πy = y1 · · · yn (y ∈ Rn).

For x ∈ Zn, let

µ(x) =

0 if πx = 0
µ(|x1|) . . . µ(|xn|) if πx , 0.

A square-free solution of (1.1) is a solution having µ(x) , 0.
Solutions of (1.1) will be weighted, as in [1], by a function w

(
x
P

)
, where the positive

parameter P tends to infinity. We assume throughout that
(i) w is infinitely differentiable with compact support;

(ii) w(x) = 0 whenever πx = 0,
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(iii) w(x) ≥ 0, and w(x) > 0 for some real solution x of (1.1).

Our object of study is

R(F,w) =
∑

F(x)=0

µ2(x)w
( x

P

)
.

An asymptotic formula for R(F,w) was obtained in [1] in the cases

(a) n ≥ 5,
(b) n = 4; D not a square.

The method used was an elaboration of that of Heath-Brown [4], whose objective was
to obtain an asymptotic formula for

N(F,w) =
∑

F(w)=0

w
( x

P

)
.

Besides the cases (a), (b), Heath-Brown also successfully treated N(F,w) in the more dif-
ficult cases

(c) n = 4; D a square,
(d) n = 3.

In the present paper, I treat R(F,w) for the cases (c), (d). Some restrictions are imposed
on F.

Let M j be the matrix obtained by deleting row j and column j of M. We say that F is
robust if

(1.2) det(M1) . . . det(Mn) , 0.

Our results will apply to robust forms, with a further restriction when n = 3.
In order to state the asymptotic formulae, we define the singular integral by

σ∞(F,w) = lim
ε→0+

1
2ε

∫
|F(x)|≤ε

w(x)dx,

where
∫
. . . dx denotes integration over Rn with respect to Lebesgue measure. Under the

conditions (i)–(iii), σ∞(F,w) is positive ([4], Theorem 3).
The singular series for our problem is

ρ∗(F) =
∏

p

(
1 −

1
p

)
ρp.

Here ρp is given by

ρp = lim
ν→∞

p−ν(n−1)#{x (mod pν) : F(x) ≡ 0 (mod pν), p2 - x1, . . . , p2 - xn}.

Thus ρp is the p-adic density of solutions of F = 0 ‘square-free with respect to p’.

Theorem 1. Let n = 4, let D be a square and suppose that F is robust. Then

R(F,w) = σ∞(F,w)ρ∗(F)P2 log P

+ O(P2 log P(log log P)−1+ε).

As usual, ε is an arbitrary positive number, supposed sufficiently small. Constants im-
plied by ‘O’ and ‘�’ may depend on F, w and ε. Any other dependence will be shown
explicitly.



THE ZEROS OF A QUADRATIC FORM AT SQUARE-FREE POINTS 3

Theorem 2. Let n = 3 and suppose that F is robust. Suppose further that none of − det M1,
− det M2, − det M3 is a square. Then

R(F,w) =
1
2
σ∞(F,w)ρ∗(F)P log P

+ O(P log P(log log P)−1/2).

The following propositions give information about ρ∗(F).

Proposition 1. Let F be nonsingular (if n = 4) and robust (if n = 3).

(a) if ρp > 0 for every prime p, then ρ∗(F) > 0.
(b) if the congruence

F(x) ≡ 0 (mod (2D)5)

has a solution with p2 - x1, . . . , p2 - xn whenever p | 2D, then ρ∗(F) > 0.

Proposition 2. If n = 3 and F is not robust, then ρ∗(F) = 0.

As an example for Proposition 2, it is a simple exercise to show that

P � #{x : µ(x) , 0, P ≤ x j < 2P, F0(x) = 0} � P

for the ternary form F0(x) = 2x1x2 − 2x2
3. The conclusion of Theorem 2 clearly extends to

F0! In fact, I conjecture that for a non-robust ternary quadratic form F and a given w, there
is an asymptotic formula

R(F,w) ∼ c(F,w)P

with c(F,w) > 0, precisely when w > 0 at some point of a certain set E = E(F) of zeros of
F. In the example,

E = {(t, t,± t) : t , 0}.

Before outlining the proofs of Theorems 1 and 2, we recall some notations from [1] and
[4]. We write, for c ∈ Zn,

S q,F(c) = S q(c) =

q∑∗

a=1

∑
b (mod q)

eq(aF(b) + c · b).

As usual, the asterisk indicates (a, q) = 1, while

c · b = c1b1 + · · · + cnbn, e(θ) = e2πiθ, eq(m) = e
(

m
q

)
.

The symbols d and t are reserved for points in Zn with positive square-free coordinates.
Let

Fd(x) = F(d2
1 x1, . . . , d2

n xn)

and similarly for wd(x). We write

S q(d, c) = S q,Fd (c).

It is convenient to write d |m as an abbreviation for

d1 |m, . . . , dn |m.

Further, let
|y| = max(|y1|, . . . , |yn|).
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Let h(x, y) (x > 0, y ∈ R) be the smooth function that occurs in Theorem 1 and 2 of [4].
We recall that h(x, y) is nonzero only for x ≤ max(1, 2|y|). It is shown in [4, Theorem 2]
that

N(F,w) = cPP−2
∑
c∈Zn

∞∑
q=1

q−nS q(c)Iq(c),

where

(1.3) cP = 1 + ON(P−N) for every N > 0,

and

Iq,F,w(c) = Iq(c) =

∫
Rn

w
( x

P

)
h
(

q
P
,

F(x)
P2

)
eq(−c · x)dx.

Clearly Iq,F,w(c) is nonzero only for q � P.
As noted in [1],

(1.4) Iq,Fd ,wd (c) =
1
π2

d
Iq

( c1

d2 , . . . ,
cn

d2

)
.

Thus

(1.5) N(Fd,wd) =
cP

π2
dP2

∑
c∈Zn

∞∑
q=1

S q(d, c)
qn Iq

 c1

d2
1

, . . . ,
cn

d2
n

 .
Let

z = z(P) =
1
7

log log P,

Q(z) =
∏
p<z

p.

For x ∈ Zn, πx , 0, let

fz(x) =

1 if p2 - x j for p < z and j = 1, . . . , n
0 otherwise.

It is easy to verify that

fz(x) ≥ µ2(x) ≥ fz(x) −
∑
p≥z

p2 | x1

1 − · · · −
∑
p≥z

p2 | xn

1.

Multiplying by w
(

x
P

)
and summing over x ∈ Zn with F(x) = 0,∑

F(x)=0

fz(x)w
( x

P

)
≥ R(F,w) ≥

∑
F(x)=0

fz(x)w
( x

P

)
(1.6)

− (S 1(z) + · · · + S n(z)).

Here

(1.7) S j(X) =
∑

p≥X, p2 | x j
F(x)=0

w
( x

P

)
.

We note that
fz(x) =

∑
d2

1 | x1
d1 |Q(z)

· · ·
∑

d2
n | xn

dn |Q(z)

µ(d),
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so that ∑
F(x)=0

fz(x)w
( x

P

)
=

∑
F(x)=0

w
( x

P

) ∑
d2

1 | x1,...,d2
n | xn

d |Q(z)

µ(d)(1.8)

=
∑

d |Q(z)

µ(d)N(Fd,wd).

We can express S j(X) somewhat similarly. Take for example j = 1 and write d(p) =

(p, 1, . . . , 1),
Fp = Fd(p) , wp = wd(p).

Then

(1.9) S 1(X) =
∑
p≥X

N(Fp,wp).

Our plan is to adapt [4] so as to evaluate N(Fd,wd) via (1.5), making the error explicit
in d, and then apply this to the last expression in (1.8) and to N(Fp,wp). The contribution
to S 1(z) from p ≥ Pε will receive a more elementary treatment, similar to [1, Proposition
1].

In conclusion, I point out a refinement of a theorem in [1] due to Blomer [2]. Let R(m)
be the number of representations of m as a sum of 3 squarefree integers. If the square-free
kernel of m is at least mδ, for a positive constant δ, and m ≡ 1, 3 or 6 (mod 8), then Blomer
obtains

(1.10) R(m) = c∞S(m)m1/2 + O(m(1−γ)/2), γ = γ(δ) > 0.

Here c∞ is the singular integral and S(m) the singular series,

m−ε � S(m) � mε .

In [1], (1.10) is obtained only for square-free m.

2. Some exponential integrals, exponential sums and Dirichlet series

From now on we assume that n = 3 or 4, and the determinant of F is a square for n = 4.
It suffices to prove Theorems 1 and 2 for weight functions w with the following property:

there exists a positive number ` = `(F,w) such that, whenever (x0, y) ∈ supp(w), we have
∂F
∂x

(x, y) � 1 (|x − x0| ≤ `)

and F has exactly one zero (x, y) with |x− x0| ≤ `. We shall assume that w has this property.
The deduction of the general case of Theorems 1 and 2 is carried out by a simple procedure
given on page 179 of [4].

As noted on page 180 of [4],

(2.1) Iq(v) = PnI∗r (v) (r = P−1q),

where

(2.2) I∗r (v) =

∫
Rn

w(x)h(r, F(x))er(−v · x)dx.

For v = 0, we have

(2.3) I∗r (0) = σ∞(F,w) + ON(rN)

for any N > 0, provided that r � 1 [4, Lemma 13]. Consequently

(2.4) Iq(0) = Pn{σ∞(F,w) + ON((q/P)N)}
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for q � P.
By combining the conclusions of [4, Lemmas 14, 15, 16, 18, 19, 22], we arrive at the

following bounds:

I∗r (v) � 1,(2.5)

r
∂I∗r (v)
∂r

� 1,(2.6)

Iq(v) � Pn,(2.7)

q
∂Iq(c)
∂q

� Pn,(2.8)

I∗r (v) �N r−1 |v|−N (N ≥ 1)(2.9)

Iq(v) �N Pn+1q−1|v|−N (N ≥ 1),(2.10)

I∗r (v) � (r−2|v|)ε(r−1|v|)1−n/2,(2.11)

Iq(v) � Pn
(

P2|v|
q2

)ε (P|v|
q

)1−n/2

,(2.12)

q
∂

∂q
Iq(v) � Pn

(
P2|v|
q2

)ε (P|v|
q

)1−n/2

.(2.13)

Lemma 1. For any K > 1,∫ ∞

0
r−1I∗r (v)dr �K |v|−K (|v| > 1),(2.14)

∫ ∞

0
r−1I∗r (v)dr � log

(
2
|v|

)
(|v| ≤ 1),(2.15)

∫ ∞

0
q−1Iq(v)dq �M Pn|v|−K (|v| > 1),(2.16)

∫ ∞

0
q−1Iq(v)dq � Pn log

(
2
|v|

)
(|v| ≤ 1).(2.17)

Proof. In view of (2.1), it suffices to prove (2.14) and (2.15). Suppose first that |v| > 1.
We use (2.11) for the range

r ≤ |v|−N/2

and (2.9) for the remaining range. Thus∫ ∞

0
r−1I∗r (v)dr � |v|ε+1−n/2

∫ |v|−N/2

0
rn/2−1−2εdr

+ |v|−N
∫
|v|−N/2

r−2dr

� |v|ε+1−n/2−N/2 (n/2−2ε) + |v|−N/2

�K |v|−K
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for a suitable choice of N = N(K, ε).
Now suppose that |v| ≤ 1. We use (2.11) for the range r ≤ |v|, (2.5) for the range

|v| < r ≤ |v|−1,

and (2.9) with N = 1 for the remaining range. Thus∫ ∞

0
r−1I∗r (v)dr � |v|ε+1−n/2

∫ |v|

0
rn/2−1−2εdr

+

∫ |v|−1

|v|
r−1dr + |v|−1

∫ ∞

|v|−1
r−2dr

� |v|1−ε + 2 log
(

1
|v|

)
+ 1 � log

(
2
|v|

)
.

We now turn to estimates for S q(d, c). Let Md be the matrix

Md = [d2
i d2

j ai j].

Thus

(2.18) det Md = π4
d det(M), det M−1

d =
(det(M))−1

π4
d

.

Writing M−1 = 1
det(M) [bi j], so that bi j ∈ Z, we note that

(2.19) M−1
d =

1
det(M)

 bi j

d2
i d2

j

 .
We write M−1

d (x) for the quadratic form, with rational coefficients, whose matrix is M−1
d .

Let ∆ = 2| det M|. When p - πd∆, we may think of M−1
d (x) as being defined modulo p.

We recall that, for any nonsingular form F,

(2.20) S q(d, c) � q1+n/2(d2
1 , q) . . . (d2

n , q)

[1, Lemma 9]. We need a slight generalization of (2.20). Let c(a) be a vector in Zn for
every a = 1, . . . , q, (a, q) = 1. Let

S d =

q∑∗

a=1

∑
b (mod q)

eq(aFd(b) + c(a) · b).

Then
S d � q1+n/2(d2

1 , q) . . . (d2
n , q).

To see this, Cauchy’s inequality yields

|S d |
2 ≤ φ(q)

q∑∗

a=1

∑
u,v (mod q)

eq(a(Fd(u) − Fd(v)) + c(a) · (u − v)).

Substitute u = v + w, so that

eq(a(Fd(u) − Fd(v)) + c(a) · (u − v))

= eq(aF(w) + c(a) · w) eq(av · ∇F(w)).



8 R. C. BAKER

The summation over v will now produce a contribution of zero unless q divides ∇Fd(w) =

2Mdw. We have
|S d |

2 ≤ qnφ(q)2
∑

w (mod q)
2Mdw≡ 0 (mod q)

1.

We may now complete the proof with the argument used for [1, Lemma 9].
Since

(2.21) S uv(d, c) = S u(d, v̄c)S v(d, ūc)

where uū ≡ 1 (mod v), vv̄ ≡ 1 (mod u) [4, Lemma 23], we can do most of our work for
prime powers q.

For n = 4, M−1
d (c) , 0, we have

(2.22)
∑
q≤X

|S q(d, c)| � π2
dX7/2+ε(|c| + 1)ε

[1, Lemma 10]. To get results that play a comparable role when n = 4, M−1
d (c) = 0 or

n = 3, we use the Dirichlet series

ζ(s, d, c) =

∞∑
q=1

q−sS q(c) (σ > 2 + n/2)

=
∏

p

{ ∞∑
u=0

p−usS pu (d, c)
}

[4, p. 194]. Bounds for those Euler factors for which p | πd will require extra work com-
pared to the analysis on pages 194–5 of [4]. If we write

(2.23) τd(c, σ) =
∏
p | πd

∞∑
u=0

p−uσ|S pu (d, c)|,

we see that the analysis in question gives

(i) for n = 3, M−1
d (c) , 0,

(2.24) ζ(s, d, c) = L(s − 2, χd,c)ν(s, d, c)

where

ν(s, d, c) =
∏

(1 − χd,c(p)p2−s)
{ ∞∑

u=0

p−usS pu (c)
}
,

and χd,c is a character satisfying

(2.25) χd,c(p) =

− det(Md)M−1
d (c)

p

 .
We note that χd,c (if not trivial) is a character to modulus 4∆π4

d |M
−1
d (c)|. Moreover,

(2.26) ν(s, d, c) � |c|ετd(c, σ)
(
σ ≥

17
6

+ ε

)
.

(ii) for n = 3, M−1
d (c) = 0,

(2.27) ζ(s, d, c) = ζ(2s − 5)ν(s, d, c),
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with

ν(s, d, c) =
∏

p

(1 − p5−2s)
{ ∞∑

u=0

p−usS pu (d, c)
}
.

Moreover,

(2.28) ν(s, d, c) � τd(c, σ)
(
σ ≥

17
6

+ ε

)
.

(iii) for n = 4, M−1
d (c) = 0, we find that

ζ(s, d, c) = L(s − 3, χd)ν(s, d, c),

where

ν(s, d, c) =
∏

p

(1 − χd(p)p3−s)
{ ∞∑

u=0

p−usS pu (d, c)
}
,

with a character χd satisfying

χd(p) =

(
det Md

p

)
.

Since det Md is a square, we take the trivial character, and write

(2.29) ζ(s, d, c) = ζ(s − 3)ν(s, d, c).

Moreover,

(2.30) ν(s, d, c) � τd(c, σ)
(
σ ≥

7
2

+ ε

)
.

For any d, we write t j = t j(d) for the product of those primes dividing exactly j of
d1, . . . , dn. Evidently,

πd = t1t2
2 . . . t

n
n.

We also write

(2.31) A(d) =

π
5ε
d t2

2 (t3t4)4 (n = 4)

π5ε
d t5/2

2 t4
3 (n = 3).

Let us write α3 = 17/6, α4 = 7/2.

Lemma 2. (i) Let F be nonsingular. Then

τd(c, σ) � π2+ε
d (σ ≥ αn + ε).

(ii) Let σ ≥ n − ε. Suppose that F is nonsingular (if n = 4) and robust (if n = 3). Then

τd(c, σ) � A(d).

Proof. (i) For n = 3, (2.20) yields
S pu (d, c)

pσu � p−(1/3+ε)u(d2
1 , p2)(d2

2 , p2)(d2
3 , p2),

1 +
∑
u≥1

|S pu (d, c)|
pσu � (d2

1 , p2)(d2
2 , p2)(d2

3 , p2),

τd(c, σ) � πεd

∏
p | πd

(d2
1 , p2)(d2

2 , p2)(d2
3 , p2)

= π2+ε
d .
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The argument is similar for n = 4.

(ii) For n = 4, (2.20) yields

1 +
∑
u≥1

|S pu (d, c)|
pσu � 1 + p−(1−ε)(d2

1 , p) . . . (d2
4 , p)(2.32)

+ p−(2−2ε)(d2
1 , p2) · · · (d2

4 , p2).

If p divides t1, then

1 +
∑
u≥1

|S pu (d, c)|
pσu � p2ε .

If p divides t2, then

1 +
∑
u≥1

|S pu (d, c)|
pσu � p2+2ε .

If p divides t3t4, then

1 +
∑
u≥1

|S pu (d, c)|
pσu � p4+4ε +

∑
u≥5

p8−(1−ε)u � p4+4ε .

Here we use the trivial bound (u ≤ 4) and (2.20) (u ≥ 5). Lemma 2(ii) follows for n = 4.
Now let n = 3. Suppose that p | t1; let us say p | d1. Then for u ≤ 4, and a fixed value of

x1, let us write

G(x2, x3) =

3∑
j,k=2

a jkd2
j d

2
k x jxk,

h = h(a) = (aa12d2
1d2

2 x1 + c2, aa13d2
1d2

3 x1 + c3).

We have

aFd(x) · c ≡ aG(x2, x3) +

3∑
k=2

aa1kd2
1d2

k x1xk + x · c

≡ x1c1 + aG(x2, x3) + (x2, x3) · h (mod pu),

|S pu (d, c)|2 ≤ pu
pu∑

x1=1

∣∣∣∣∣∣
pu∑∗

a=1

∑
y (modpu)

e(aG(y) + y · h)

∣∣∣∣∣∣2
(by Cauchy’s inequality)

� p2u(p2u)2

by the generalization of (2.20) noted above, with n replaced by 2 and F replaced by
F(0, x2, x3). Hence, applying (2.20) directly for u ≥ 5,

1 +
∑
u≥1

|S pu (d, c)|
pσu � p4ε +

∑
u≥5

p2−u( 1
2−ε)

� p4ε .
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Now let p | t2. Then

(2.33)
S pu (d, c)

pσu �

p2+2ε (u ≤ 2)

p4−u(1/2−ε) (u ≥ 3).

Here we use the trivial bound (u ≤ 2) and (2.20) (u ≥ 3). Hence

1 +
∑
u≥1

|S pu (d, c)|
pσu � p5/2+3ε .

Similarly, if p | t3,

S pu (d, c)
pσu �

p4+4ε (u ≤ 4)

p6−u( 1
2−ε) (u ≥ 5),

1 +
∑
u≥1

|S pu (d, c)|
pσu � p4+4ε .

We now complete the proof as above.
The next lemma is useful for singular series calculations.

Lemma 3. Let F be nonsingular,

Λp(F) =
∑
d | p
πd>1

∑
u≥1

p−nu|S pu (d, 0)|.

Then

Λp(F) �

p−2 (n = 4, F nonsingular)

p−3/2 (n = 3, F robust).

If n = 3 and F is not robust, then Λp(F) � p−1.

Proof. Suppose first that n = 4. The proof of Lemma 2 (ii) shows that, for d | p,

∑
u≥1

p−nu|S pu (d, 0)| �


1 (πd = p)
p2 (πd = p2)
p4 (πd ≥ p3).

Hence
π−2

d

∑
u≥1

p−nu|S pu (d, 0)| � p−2,

and we obtain the desired bound since d has O(1) values.
The argument for n = 3 is similar in the case when F is robust. However, if F is not

robust, we have the weaker bound

(2.34)
∑
u≥1

p−nu|S pu (d, 0)| � p (πd = p).

For the left-hand side of (2.34) is

� p−1/2(d2
1 , p)(d2

2 , p)(d2
3 , p) + p−1(d2

1 , p2)(d2
2 , p2)(d2

3 , p2)

from (2.20).
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3. Sums of Sq(d, c) and Sq(d, 0)q−n.

Let en = 1 if n = 4 and en = 1/2 if n = 3.
We assume throughout Sections 3 and 4 that F is robust (n = 3) and nonsingular (n = 4).

Define

(3.1) η(d, c) =


en if M−1

d (c) = 0
1 if n = 3 and −(det Md)M−1

d (c) is a nonzero square
0 otherwise.

Define
σ(d, c) = ν(n, d, c).

We observe that whenever η(d, c) , 0,

σ(d, c) =
∏

p

σp(d, c),

where

σp(d, c) = (1 − p−1)
∞∑

u=0

p−nuS pu (d, c).

Lemma 4. For X > 1,∑
q≤X

S q(d, c) = η(d, c)σ(d, c)
Xn

n
+ O(Xαn+2επ3+ε

d (1 + |c|)1/2).

Proof. The case n = 4, M−1
d (c) , 0 follows from (2.22), and we exclude this case below.

We recall the version of Perron’s formula given in [1, Lemma 13]. Let b, c be positive
constants and λ a real constant, λ + c > 1 + b. For K > 0 and complex numbers a` (` ≥ 1)
with |a` | ≤ K`b, write

h(s) =

∞∑
`=1

a`
`s (σ > 1 + b); then

(3.2)
∑
`≤x

a`
`λ

=
1

2πi

∫ c+iT

c−iT
h(s + λ)

xs

s
ds + O

(
Kxc

T

)
whenever x > 1, T > 1, x − 1/2 ∈ Z.

For n = 4, let a` = S `(d, c), b = 3, λ = 0, x = [X] + 1/2, T = x10. According to (2.20),
we may take K � π2

d. Recalling (2.29),∑
q≤X

S q(d, c) =
1

2πi

∫ 5+iT

5−iT
ζ(s, d, c)

x2

s
+ O(π2

d)

=
1

2πi

∫ 5+iT

5−iT
ζ(s − 3)ν(s, d, c)

xs

s
ds + O(π2

d).

We move the line of integration back to σ = 7
2 + ε. On the line segments [7/2 + ε, 5] ± i T ,

ζ(s − 3) � T 1/4,

ν(s, d, c)xs

s
� π2+ε

d T−1/2
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from (2.30) and Lemma 2 (i). Thus these segments contribute O(π2+ε
d ). Since∫ U

0
|L(σ + it, χ)|2dt � k1/2U

(
1
2
< σ < 1

)
for a Dirichlet L-function to modulus k, we have∫ T

−T

∣∣∣∣∣∣ζ
(

1
2

+ ε + it
)
ν(s, d, c)

∣∣∣∣∣∣ dt
1 + |t|

� π2+ε
d log T.

Hence the segment [7/2 + ε − iT, 7/2 + ε + iT ] contributes O(X7/2+2επ2+ε
d ). Writing Res for

the residue of the integrand at s = 4, with Res = 0 if there is no pole,∑
q≤X

S q(d, c) = Res +O(π2+ε
d X7/2+2ε).

Similarly, for n = 3,∑
q≤X

S q(d, c) =
1

2πi

∫ 5+iT

5−iT
ζ(s, d, c)

xs

s
ds + O(π2

d)

=
1

2πi

∫ 5+iT

5−iT
E(s)ν(s, d, c)

xs

s
ds + O(π2

d),

where

E(s) =

L(s − 2, χ) if M−1
d (c) , 0

ζ(2s − 5) if M−1
d (c) = 0

and χ = χd,c satisfies (2.25). We take χ to be the trivial character if − det(Md)M−1
d (c) is a

nonzero square. Since χ is a character to modulus k = O(π4
d |c|

2), a simple hybrid bound
[3, Lemma 1] yields

E(s) = O((kT )1/4)

= O
(
(1 + |c|)1/2πdT 1/4

)
for σ ≥ 11/4, |t| ≤ T .

We move the line of integration back to σ = 17/6 + ε. A slight variant of the preceding
argument gives ∑

q≤X

S q(d, c) = Res +O
(
X17/6+2ε(1 + |c|)1/2π3+ε

d

)
.

It now suffices to show that the residue at n is

η(d, c)σ(d, c)
xn

n
.

In the case n = 4, the residue is

ν(4, d, c)
x4

4
as required.

For n = 3, there is no pole unless either M−1
d (c) = 0 or M−1

d (c) , 0 and χd,c is trivial,
that is, − det(Md)M−1

d (c) is a nonzero square. The residue is σ(d, c) x3

3 or 1
2 σ(d, c) x3

3
depending on whether the coefficient of 1

s−3 in the Laurent expansion of the zeta factor is
1 or 1

2 , and the lemma follows.
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Lemma 5. For X > 1,∑
q≤X

q−nS q(d, 0) = enσ(d, 0) log X

+ O(A(d) + π2+ε
d Xαn−n+2ε).

Proof. For n = 4, we apply (3.2) with a`, b, x, T , K as in the preceding proof, but now
λ = 4, c = 1. This leads to∑

q≤X

q−4S q(d, 0) =
1

2πi

∫ 1+iT

1−iT
ζ(s + 1)ν(s + 4, d, 0)

xs

s
ds + O(π2

d).

We move the line of integration back to σ = − 1
2 + ε. The integrals along segments are

O(π2+ε
d X−1/2+2ε) by a variant of the above argument. There is a double pole at 0; the

Laurent series of the integrand is
1
s2 (1 + as + · · · )(ν(4, d, 0) + ν′(4, d, 0)s + · · · )(1 + (log x)s + · · · ),

where a is an absolute constant. The residue is

ν(4, d, 0)(log x + a) + ν′(4, d, 0)

= σ(d, 0) log X + O
(

max
σ≥4−ε

τd(0, σ) + 1
)
.

To get the last estimate, we write ν′(4, d, 0) as a contour integral on |s − 4| = ε using
Cauchy’s formula for a derivative, and apply (2.30). We now complete the proof using
Lemma 2 (ii).

For n = 3, a similar argument gives∑
q≤X

q−3S q(d, 0) =
1

2πi

∫ 1+iT

1−iT
ζ(2s + 1)ν(s + 3, d, 0)

xs

s
ds + O(π2

d).

We move the line of integration back to σ = − 1
6 + ε, estimating the integrals along line

segments as O(π2+ε
d X−1/6+ε). This time the Laurent series at 0 is

1
2s2 (1 + 2as + · · · )(ν(3, d, 0) + ν′(3, d, 0)s + · · · )(1 + (log x)s + · · · )

with residue
1
2
ν(3, d, 0)(log x + 2a) +

1
2
ν′(3, d, 0),

and we complete the proof as before.

4. Evaluation of N(Fd, wd).

We fix d for the present, with
|d| ≤ Pε ,

and write

c′ =

 c1

d2
1

, . . . ,
cn

c2
n

 .
Lemma 6. We have ∑

c∈Zn

|c′ |>Pε

∣∣∣∣∣∣ ∞∑
q=1

q−nS q(d, c)Iq(c′)
∣∣∣∣∣∣ � Pn.
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Proof. We note first that for A ≥ 1, R > 1, N ≥ 2,∑
c>AR

(cA−1)−N = AN
∞∑

k=0

∑
2k AR<c≤2k+1AR

c−N(4.1)

� AN
∞∑

k=0

2−(N−1)kA−N+1R−N+1 � AR−N+1.

Taking A = d2
1 , R = Pε , we have∑

|c1 |> d2
1 Pε

(c1d−2
1 )−N

∑
max

(
|c1 |

d2
2
,..., |cn |

d2
n

)
≤

c1
d2
1

1

� P2(n−1)ε
∑

|c1 |> d2
1 Pε

(c1d−2
1 )−N+n−1

� P2(n−1)εd2
1P−(N−n)ε � P−(N−3n)ε .

Here we allow for a possible renumbering of the variables. If N = N(ε) is chosen suitably,
we get the lemma by combining this estimate with (2.10) and (2.20), on recalling that the
summation over q is restricted to q � P.

Lemma 7. Let |c′| ≤ Pε . Then

(4.2)
∞∑

q=1

q−nS q(d, c)Iq(c′) = η(d, c)σ(d, c)
∫ ∞

0
q−nIq(c′)dq + O(Pαn+20ε).

Proof. Let

T (q) =
∑
`≤q

S `(d, c),

B = π3+ε
d (1 + |c|)1/2.

For R ≥ 1
2 , ∑

R<q≤2R

q−nS q(d, c)Iq(c′) =

∫ 2R

R
q−nIq(c′)dT (q)(4.3)

= q−nIq(c′)T (q)
∣∣∣∣∣2R

R
−

∫ 2R

R

∂

∂q
(q−nIq(c′))T (q)dq

= q−nIq(c′)
{
η(d, c)σ(d, c)qn

n
+ O(Bqαn+2ε)

} ∣∣∣∣∣2R

R

−

∫ 2R

R

∂

∂q
(q−nIq(c′))

{
η(d)σ(d, c)qn

n
+ O(Bqαn+2ε)

}
dq

from Lemma 4. Now for R < q ≤ 2R,

q−nIq(c′) � Pn/2+1+2εR−n/2−1,

∂

∂q
(q−nIq(c′)) � Pn/2+1+2εR−n/2−2
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from (2.12), (2.13). Hence the O-terms in the last expression in (4.3) contribute
O(BPn/2+1+2εR−n/2−1+αn+2ε). We conclude that∑

R<q≤2R

q−nS q(d, c)Iq(c′) =(4.4)

η(d, c)σ(d, c)
∫ 2R

R
q−1Iq(c′)dq + O(BPn/2+1+2εR−n/2−1+αn+2ε).

The lemma follows because q = O(P) for the nonzero terms of the series in (4.2).

Lemma 8. We have ∑
|c′ |>|d|ε

∣∣∣∣∣∣ ∞∑
q=1

q−nS q(d, c)Iq(c′)
∣∣∣∣∣∣ � Pn.

Proof. By Lemma 6, we can restrict the sum to

|d|ε < |c′| ≤ Pε .

Let K > 1. Combining Lemma 7 with (2.16), these c′ contribute

�K Pn
∑
|c′ |>|d|ε

|c′|−K |σ(d, c)| + Pαn+24ε

�K Pn
∑
|c′ |>|d|ε

|c′|−K+επ2+ε
d + Pn

by (2.26), (2.28), (2.30) and Lemma 2 (i). The last expression is (arguing as in the proof
of Lemma 6)

�K Pn+2nεπ2+ε
d

∑
c1>d2

1 |d|ε
(c1d−2

1 )−K+n−1+ε + Pn.

The lemma now follows from an application of (4.1) with N = K − n − 1 − ε, A = d2
1 ,

R = |d|ε ; K is suitably chosen depending on ε.

Lemma 9. Let
0 < |c′| ≤ |d|ε .

Then
∞∑

q=1

q−nS q(d, c)Iq(c′) � PnA(d)η(d, c) + Pαn+20ε .

Proof. In view of Lemma 7 it suffices to show that

σ(d, c)
∫ ∞

0
q−nIq(c′)dq � PnA(d).

The integral is� Pn log(2 |d|) by (2.16), (2.17) and the simple observation that |c′| ≥ |d|−2.
The required estimate for σ(d, c) is provided by (2.26), (2.28), (2.30) and Lemma 2 (ii)
(with ε/2 in place of ε).

It remains to treat the series
∞∑

q=1

q−nS q(d, 0)Iq(0).

Lemma 10. We have
∞∑

q=1

q−nS q(d, 0)Iq(d, 0) = enσ(d, 0)σ∞(F,w)Pn log P + O(PnA(d)).
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Proof. To begin with,∑
q≤P1−ε

q−nS q(d, 0)Iq(0)(4.5)

=
∑

q≤P1−ε

q−nS q(d, 0)Pnσ∞(F,w) + ON(π2
dPn+(1−ε)/2P−εN)

(from (2.14) and (2.20))

= enσ(d, 0)σ∞(F,w)Pn log P1−ε + O(PnA(d))

by Lemma 5 together with an appropriate choice of N.
For the range q > P1−ε , we use (4.4). Crudely,∑

q>P1−ε

q−nS q(d, 0)Iq(c′)(4.6)

= enσ(d, 0)
∫ ∞

P1−ε
q−1Iq(0)dq + O(π3+ε

d Pn/2+1+2ε).

Combining (4.5), (4.6), and substituting Iq(0) = PnI∗r (0), where r = q/P, we obtain
∞∑

q=1

q−nS q(d, 0)Iq(0) = enσ(d, 0)σ∞(F,w)Pn log P(4.7)

+ enσ(d, 0)L(P−ε)Pn + O(PnA(d)).

Here

L(λ) = σ∞(F,w) log λ +

∫ ∞

λ

r−1I∗r (0)dr.

It is shown by Heath-Brown [4, p. 203] that L(λ) tends to a limit L(0) as λ tends to 0, and
more precisely

(4.8) L(λ) = L(0) + ON(λN).

Recalling (2.28), (2.30) and Lemma 2 (ii), we see that (4.7) and (4.8) together yield the
lemma.

Lemma 11. We have

N(Fd,wd) = enπ
−2
d σ(d, 0)σ∞(F,w)Pn−2 log P

+ O(Pn−2π−2
d A(d)#{c : |c′| ≤ |d|ε , η(d, c) , 0}).

Proof. Combining Lemmas 8, 9 and 10, and noting that 0 is counted in {c : |c′| ≤ |d|ε ,
η(d, c) , 0}, ∑

c∈Zn

∞∑
q=1

q−nS q(d, c)Iq(d, c′)

= enσ(d, 0)σ∞(F,w)Pn log P

+ O(PnA(d)#{c : |c′| ≤ |d|ε , η(d, c) , 0}).

The lemma now follows easily on combining this with (1.5) and (1.3).
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5. Completion of the proof of Theorems 1 and 2.

Lemma 12. Suppose that F is nonsingular (n = 4) and robust (n = 3). In the notation of
(1.7), we have

S 1(Pε) � Pn.

Proof. In view of (1.9), it suffices to show that

(5.1) N(Fp,wp) � Pn+ε/2 p−2.

This is a consequence of [1, Proposition 1] for n = 4. The proof of that proposition can be
adapted slightly to give (5.1) for n = 3. By following the argument on [1, pp. 107–8], we
see that it suffices to show for 1 ≤ h ≤ P that the equation

cx2
1 + z2

1 + A2z2
2 = 0

has O(P1+ε/2h−1) solutions with

|(x, z1, z2)| � P, x1 , 0, x1 ≡ 0 (mod h).

Here c, A2 are nonzero integers, since the quadratic form cx2
1 + z2

1 + A2z2
2 is obtained from

F by a nonsingular linear change of variables. There are O(Ph−1) choices for x1. For each
of these, there are O(Pε/2) possible (z1, z2) [1, Lemma 1]. This completes the proof of the
lemma.

Lemma 13. Let F be nonsingular. Let

B(q) =
∑
d | q

µ(d)
π2

d
S q(d, 0).

Then
(i) B(q) is a multiplicative function.

(ii)
∑

t |Q(z)

µ(t)
π2

t
S q(t, 0) = B(q)

∏
p<z
p-q

(1 − p−2)n.

(iii) For all primes p,

1 + (1 − p−2)−n
∞∑

u=1

p−nuB(pu) = (1 − p−2)−nρp.

Proof. (i) This is a special case of [1, Lemma 17].

(ii) This is a variant of [1, Lemma 16]. The sum over t is unrestricted in [1].

(iii) This is obtained by letting N tend to infinity in the expression

1 + (1 − p−2)−n
N∑

u=1

p−nuB(pu) = (1 − p−2)−n p−(n−1)N MN ,

where

MN = #{x (mod pN) : F(x) ≡ 0 (mod pN), p2 - x1, . . . , p2 - xn},

which is (5.9) of [1]. Convergence is a consequence of Lemma 3.

Lemma 14. Let F be nonsingular (n = 4) and robust (n = 3). We have

(5.2)
∑

d |Q(z)

µ(d)
π2

d
σ(d, 0) = ρ∗(F) + O((log log P)−en ).
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Proof. Let

V(w) =
∏
p<w

(
1 −

1
p

)
.

The left-hand side of (5.2) is lim
w→∞

h(w), where

h(w) =
∑

d |Q(z)

µ(d)
π2

d

∏
p<w

(
1 −

1
p

) ∞∑
u=0

S pu (d, 0)
pnu

= V(w)
∞∑

q=1
p | q⇒ p<w

q−n
∑

d |Q(z)

µ(d)
π2

d
S q(d, 0)

(after a simple manipulation). By Lemma 13 (ii),

h(w) = V(w)
∞∑

q=1

q−nB(q)
∏
p1<z
p1-q

(1 − p−2
1 )n

= V(w)
∏
p1<z

(1 − p−2
1 )n

∞∑
q=1

p | q⇒ p<w

C(q).

Here

C(q) = q−nB(q)
∏
p1<z
p1 | q

(1 − p−2
1 )−n

is multiplicative by Lemma 13 (i), and so

h(w) = V(w)
∏
p<z

(1 − p−2
1 )n

∏
p<w

(1 + C(p) + C(p2) + · · · )

=
∏
p1<z

(1 − p−2
1 )n

∏
p<w

(
1 −

1
p

) (
1 + ap(z)

∞∑
u=1

B(pu)
pnu

)
.

Here

ap(z) =

(1 − p−2)−n if p < z
1 if p ≥ z.

Letting w tend to infinity, the left-hand side of (5.2) is

(5.3)
∏
p<z

(
1 −

1
p

)
ρp

∏
p≥z

(
1 −

1
p

) (
1 +

∞∑
u=1

B(pu)
pnu

)



20 R. C. BAKER

by Lemma 13 (iii). This is clearly close to ρ∗(F) for large z. More precisely,(
1 −

1
p

)
ρp =

(
1 −

1
p

) (
(1 − p−2)−n +

∞∑
u=1

p−nuS pu (0)

+
∑
d | p
πd>1

µ(d)
π2

d

∑
u≥1

S pu (d, 0)
pnu

)

=

(
1 −

1
p

) (
1 +

∞∑
u=1

p−nuS pu (0) + O(p−(1+cn)
)

by Lemma 3. Now for p - 2D,(
1 −

1
p

) (
1 +

∞∑
u=1

p−nuS pu (0)
)

=

1 + O(p−2) (n = 4)
1 + O(p−3/2) (n = 3)

as shown by Heath-Brown on p. 195 of [4]; one takes

δ =

 1
6 (n = 3)
1
2 (n = 4)

in his argument. We obtain

(5.4)
(
1 −

1
p

)
ρp = 1 + O(p−(1+en)).

Essentially the same argument shows that

(5.5)
(
1 −

1
p

) (
1 +

∞∑
u=1

B(pu)
pnu

)
= 1 + O(p−(1+en)).

It is now an easy matter to deduce from (5.4) and (5.5) that the expression in (5.3) is∏
p

(
1 −

1
p

)
ρp + O(z−en )

as required.

Proof of Proposition 1. Part (a) is a straightforward consequence of (5.4). For part (b), we
may repeat verbatim the proof that ρp > 0 for all p in [1, pp. 130–131].

Proof of Proposition 2. We need only show that(
1 −

1
p

)
ρp = 1 −

k
p

+ O
(

1
p3/2

)
where k is the number of j, 1 ≤ j ≤ 3, for which det M j = 0. Arguing as in the preceding
proof, this reduces to showing that

(5.6)
∑
d | p
πd>1

µ(d)
π2

d

∑
u≥1

S pu (d, 0)
p3u = −

k
p

+ O
(

1
p3/2

)
.
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Using unchanged the part of the proof of Lemma 3 with πd ≥ p2, we find that these terms
contribute O(p−3/2) to the left-hand side of (5.6). A familiar argument also gives, for
πd = p, ∑

u,2

S p(d, 0)
p3u � p−1/2(d1, p)(d2, p)(d3, p)

+ p−3/2(d1, p2)(d2, p2)(d3, p2) � p1/2,

so that terms with πd = p, u , 2 also contribute O(p−3/2).
Write d(1) = (p, 1, 1), d(2) = (1, p, 1), d(3) = (1, 1, p) It remains to show that

(5.7)
S p2 (d( j), 0)

p6 =

p + O(p1/2) if det M j = 0
O(1) if det M j , 0.

The case det M j , 0 of (5.7) is essentially the same as the case n = 3, p | t1 of the proof
of Lemma 2 (ii). Now suppose det M j = 0. Since M j has rank at least 1, its rank is 1.
Taking j = 1 for simplicity of writing,[

x2 x3

]
M j

[
x2
x3

]
=

r
s

(bx2 + cx3)2

with integers r, s, b, c, rs , 0, (b, c) , 0. For p - s, ss̄ ≡ 1 (mod p2),

F(p2x1, x2, x3) ≡ rs̄(bx2 + cx3)2 (mod p2).

Hence

S p2 (d( j), 0) = p2
p2∑∗

a=1

p2∑
x2=1

p2∑
x3=1

ep2 (ars̄(bx2 + cx3)2)

= p4
p2∑∗

a=1

p2∑
y=1

ep(ay2) if p - rs(gcd(b, c)),

since bx2 + cx3 takes each value (mod p2) exactly p2 times. The last expression is evalu-
ated in [4, Lemma 27] as

p4 · p2(p − 1) = p7 − p6,

and the proof of the proposition is complete.

Lemma 15. Let F be nonsingular (n = 4) or robust (n = 3). Then∑
d |Q(z)

µ(d)N(Fd,wd) = enσ∞(F,w)ρ∗(F)Pn−2 log P(5.8)

+ O(Pn−2 log P(log log P)−en ).

Proof. From Lemma 11, the left-hand side of (5.8) is

enσ∞(F,w)Pn−2 log P
∑

d |Q(z)

µ(d)σ(d, 0)
π2

d
(5.9)

+ O
(
Pn−2

∑
d |Q(z)

π−2
d A(d)#{c : |c′| ≤ |d|ε}

)
.

The O-term is
� Pn−2

∑
d |Q(z)

π−2+4/3+2+ε
d |d|5ε
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since A(d) = O(π4/3+5ε
d ). Moreover, for given k,∑

d |Q(z)

πk
d � #{d : d | Q(z)}Q(z)4k

� Q(z)4k+ε � ez(4k+2ε).

The O-term in (5.9) is thus

� Pn−2e6z = Pn−2(log P)6/7.

The lemma now follows on applying Lemma 14 to the first sum over d in (5.9).

Lemma 16. Under the hypothesis of Theorem 1 or Theorem 2, we have∑
z≤p<Pε

N(Fp,wp) = O(Pn−2 log P(log log P)−1+8ε).

Proof. By Lemma 11,

N(Fp,wp) = en p−2σ(dp, 0)σ∞(F,w)Pn−2 log P(5.10)

+ O(Pn−2 p−2+5εNp).

Here Np is the number of c in the box

B : |c1| ≤ p2+ε , |c j| ≤ pε (2 ≤ j ≤ n)

for which either

(5.11) det(Md(p))M−1
d(p)(c) = 0

or n = 3 and

(5.12) det(Md(p))M−1
d(p)(c) = −q2,

for a nonzero integer q.
Recalling (2.18), (2.19), we find that

det(Md(p))M−1
d(p)(c) = b11c2

1 + 2p2
n∑

j=2

b1 jc1c j + p4
n∑

i, j=2

bi jcic j,

with
b11 = det(M1) , 0.

We see at once that (5.11) holds for only O(p3ε) points c in B, since c2, . . . , cn determine
c1 to within two choices.

If (5.12) holds, then

0 = b11 det Md(p)M−1
d(p)(c) + b11q2(5.13)

=

(
b11c1 + p2

n∑
j=2

b1 jc j

)2

− p4` + b11q2,

where

` =

( n∑
j=2

b1 jc j

)2

−

n∑
i, j=2

bi jcic j.
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If ` = 0, then −b11 is a nonzero square from (5.13), in contradiction to the hypothesis
of Theorem 2. We conclude that the aid of [1, Lemma 1] that for given c2, c3, (5.12)
determines c1 to within O(pε) possibilities. Thus in all cases,

Np = O(p3ε).

We use this estimate together with (2.28), (2.30) and Lemma 2 (ii) to deduce from (5.10)
that

N(Fp,wp) = O(Pn−2(log P)p−2+8ε).
The lemma now follows.

We are now ready to complete the proofs of Theorems 1 and 2. From (1.6), (1.8),∣∣∣∣∣∣R(F,w) −
∑

d |Q(z)

µ(d)N(Fd,wd)

∣∣∣∣∣∣ ≤ n max
j

S j(z) ≤ n
∑
p≥z

N(Fp,wp)

after a possible renumbering of the variables. Thus

R(F,w) =
∑

d |Q(z)

µ(d)N(Fd,wd) + O(Pn−2(log P)(log log P)−1+8ε)

(from Lemmas 12 and 16)

= enσ∞(F,w)ρ∗(F)Pn−2 log P + O(Pn−2(log P)(log log P)−gn )

from Lemma 15. Here

gn =

1 − 8ε (n = 3)
1/2 (n = 4).

Since ε is arbitrary, this completes the proof.
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