Schaffer’s determinant argument

R. C. Baker

1 Introduction

Let ||...]|| denote distance from the nearest integer. Various versions of
the following problem in simultaneous Diophantine approximation have been
studied since 1957, beginning with Danicic [5]. Given an integer h > 2. we
seek a number ¢ having the following property, for every ¢ > 0 and every
pair a = (ay,...,a),8=(61,...,8,) in R~

For N > C(h,¢€), there is an integer n,1 < n < N, satisfying

In%a; +nB;|| < N=+ (j=1,....,h).

It is convenient to say that € is admissible for h quadratic polynomials if 0
possesses the above property. The best known result for general A is that

1
1.1 ——— s admissible for h quadratic polynomials.
h?+h

Most of the ideas leading to (1.1) occur in the lectures of W. M. Schmidt [7].
In particular [7] contains the corresponding result for the special case 8 = 0.
The finishing touches for (1.1) are in Baker [1], [2]; see also [3]. One should
note the correction in [4], which applies equally to Theorem 5.1 of [3]. This
theorem is used in proving (1.1) in [3], and again in the present paper.

Schiffer [6] was able to improve (1.1) in the case h = 2, showing that 2/11
is admissible for a pair of quadratic polynomials. The key to his improvement
is Lemma 4 of [6], which we need not restate here since it is essentially
subsumed under Theorems 2 and 3 below. Schaffer’s lemma is an ingenious
refinement of the ‘determinant argument’ of Schmidt. This is Lemma 18A
of [7], abstracted as Lemma 7.6 in [3] and repeated below as Lemma 4.

Theorems 2 and 3 will be applied to give the following modest improve-
ment of (1.1).



Theorem 1 Let h > 3. The number (h* + h — 1/2)7" is admaissible for h
quadratic polynomials.

We now give a version of Schéffer’s lemma for R". We write ab for inner
product in R*, and |a| = (aa)'/?. The constants C(h,¢), C(h) need not be
the same at each occurrence. The cardinality of a finite set £ is denoted by

€.

Theorem 2 Leth > 2,¢ >0, M > C(h,e), A>1,U>1, UA< M and
0<V <1, with

(1.2) M AV < 1.
Let e € R". Let A be a subset of Z", with
|A| > M* max(1, (M"V)h/(+D)y,

Suppose that, for p in A, we have

(1.3) Ip| <A,

and there are coprime integers ((p), w(p),

(1.4) 0<{(p) <U,
with

(1.5) [{(p)pe — w(p)| < V.

Then there is a subset C of A and a natural number ¢ such that
C] > |AIM ™ min(1, (M"V)~H/ ¢+D)y
and L(p) = ¢ for all p in C.

In Theorem 3, we assume a somewhat similar situation but we suppose
that there is some ‘known repetition’ among the ¢(p). We use this to get a
‘lot of repetition’. The linear span of a set S in R" is denoted by Span S.

Theorem 3 Leth >2,¢ >0, M > C(hye), A>1,U>1, UA< M, 0<
V <1 and let e € R". Let A be a subset of Z", W = Span A, dim W = m.
Suppose that, for each p in A,

(L6) A/2 < |p| < A,
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and there ezist coprime integers {(p), w(p) satisfying

(1.7) Uj2 <t(p) <U,
(1.8) |[{(p)pe — w(p)| < V.

Suppose that for some integer n, 2 < n < m with

(1.9) C(R)UM™mA™Y < 1

for a suitable positive C(h), there are linearly independent py,...,p, in A
with {(p,) = (py) = - = L(p,). Then there is a subset C of A and a

natural number ¢ such that
IC[ > |A|M™
and {(p) = ¢ for all p in C.

Lemma 4 of [6] is essentially equivalent to the cases h = 2 of Theorems 3
and 4, taken together.

2 Proofs of Theorems 2 and 3.

As in [3], the determinant of t vectors ay,...,a; in R", where 1 <t < h, is
the t-dimensional volume of the parallellepiped

t
{Zyiai:OSyl,--.,ytS 1}
=1

and is denoted by det(ay, ..., a;). Note that
det(ay,...,a;)* = det{a;a; : 1 <i,j <t}

is an integer whenever a1, ..., a; are in Z"; compare [8], equation (2.1), p.
4. If a4, ..., a; are linearly independent, and
t
A= {Zniai SNy, ...,y € Z}
i=1
is the t-dimensional lattice generated by a4, ..., a;, then the determinant of

A is defined to be
d(A) = det(ay, ..., ay).

The unit ball in R” is denoted by Kj.
We begin with a few observations from linear algebra.
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Lemma 1 Let vy, v1,...,v, be in R" vy # 0. Then

v v
det(vy,...,v,) < hmax (%, e L}—ZD mgmxdet(vo,vl, Vi1, Vit .-, Up).

Proof. Evidently we may suppose that |vg| = 1 and, after applying a linear
isometry to R that vg = (1,0,...,0). Let v; = (v;1,...,v), and let M; be
the cofactor of v;; in the matrix A = [v;; : 1 <4,j < h]. Then

h
(2.1) det(vy,...,v) < Z |vig M;| < hmax |v;| max | M;].

i=1
Now consider the matrix A; obtained by replacing row ¢ of A by vy. We have
(2.2) det(vo, v1,...,Vi—1,Vit1,...,v,) = | det A;| = |M;].
The lemma follows from (2.1), (2.2).

Lemma 2 Let x,...,x; be linearly independent in R". The distance be-
tween parallel hyperplanes

c+ a;xp, + Span{xy,...,xp, 1} (i=1,2)

18
det(xq,...,xp_1, )

a; —a
‘ ! 2’ det(a:l,...,wh,l)
Proof. Tt suffices to show that the distance d from xj, to Span{xy, ..., &, 1}

18
det(a:l, R ,ZUh)

det(wl, Ce ,a:h_l) )
We use the Gram-Schmidt process to replace @1, ..., x; by an orthogonal set
Lo+ V1

V1 = &1,V = T2 — V1

V1 -V
and so on. Note that
det(xq,...,x;) = det(vy,...,v;) = |vg|...|v;] (i=1,...,h).

Hence
det(vy,...,vs)  det(xy,...,xp)

- det(vy,...,v4_1) det(xy,...,xp 1)



Lemma 3 Let xy,...,xy be linearly independent points of a hyperplane with
equation
ar =b

in R". Then for any x in the hyperplane, we have

(2.3) x=ta+- -+ thxy

with t; +--- 4+ 1, = 1.

Proof. We may define tq,...,t, uniquely via (2.3). On each side of (2.3),

take the inner product with a:
b=ax =tax, + -+ thax,
= (t1 + -+ tp)d.
Since b # 0 by independence of @1, ..., xy, the lemma follows.
Throughout the remainder of the paper, constants implied by < depend

at most on h and €. We suppose (as we may) that € is sufficiently small. A
quantity of the form C'(h)e* is denoted by 4.

Lemma 4 Let N > C(h,€). Let A be an h-dimensional lattice in R" with
d(A) = D < N? and ANKy = {0}. Let II be the dual lattice of A. Let A be a
subset of IT with |p| < N for all p in A. Suppose that Span A has dimension
t, and that any t vectors in A have determinant < Z. Let e € R". Let U,V
be positive numbers, U < N, such that for any p in A there are coprime
integers ((p), w(p) satisfying

1<l(p) <U, |l(p)ep —w(p)| < V.

Suppose further that
ZU'VDNe® < 1.

Then there is an integer { and a subset C of A with |C| > |AIN=° {(p) =
for all p in C.

Proof. As noted above, this is Lemma 7.6 of [3].
Proof of Theorem 2. There are two cases to consider.
Case 1. There is a subset £ of A with
E| > |AIM = min(1, (M"V) =M "Dy,
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such that Span & has dimension t < h — 1.

We apply Lemma 4 with A =11 =7Z" D=1, N = M and &, € in place
of A, e. Clearly we may take

Z = A"
Now
ZU'WDN® < A'U'VM®
< M"Y « M
Hence there is a subset C of £ and a natural number ¢ such that
IC| > |E|M 0 > | A|M = min(1, (M"V)~"/ (D)

and {(p) = ¢ for all p in C.

Case 2. Case 1 does not hold.

It is convenient to write

f(x) = xe, R = (M/V)Y/"HD),
By Dirichlet’s theorem, there is a point p, in Z" and an integer wy such that
(2.4) 0 < |po| < R, |f(po) — wo| < R7".
We choose py,...,p,_; in A to maximize
C = det(py, ((p1)Py; - - - {(Ph-1)Ph-1)-
Since we are in Case 2, we have Span A = R" and C' > 0. Let us write
6 = Up,)wy = wlp) (j=1,....h).

We note that

(2.5) det(py, (1py, - - L1 1, L(P)P, LjaPs 1, - - - bnoaPy ) < C

for all p in A, by choice of py,...,p,_;, while

M
(26) det(ﬁ(p)p, glplv R ,Eh,lph_l) < m C
0



by Lemma 1, (2.5), (1.3) and (1.4).
It follows from (2.5), (2.6) and Cramer’s rule that if we write {(p)p in
the form

(2.7) U(p)p = YoPo + 1Py + - F Yn1Pp_1,
then

) M

0

Let E(x) be the linear function on R" for which

Then E takes the form .
with B = (By,..., By) € Z". Let us write
ged (By, ..., By, C)=D

for the greatest common divisor of By,..., B, and C.
Now consider the linear function

F=f—-F.
We have

F(py) = f(pg) —wo < R,
Ftp,) = flip;) —w; <V (j=1,....,h—1),

from (2.4), (1.5). Taking into account (2.7), (2.8),

(2.9) F(t(p)p) < y% R4V

< |po| " (MR + RV)
< |p0|—1M1/(h+1)Vh/(h+1)

for all p in A. It is convenient to define

H = |p0|_1M1/(h+1)Vh/(h+1);
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the above calculation gives V < H.
We can now give a bound for the integer

(2.10) k(p) = CD™H(E((p)p) — w(p))-

We have

k(p) = CD™'(—=F({(p)p) + f({(p)p) — w(p))
<CD ' H+V)<CD'H

from (2.9), (1.5).
Next we distinguish two subcases of Case 2.

Case 2(a). CD'H < M~<. In this case k(p) = 0 for all p in A. The
points

(L(p)p, w(p))

lie in an h-dimensional hyperplane in R**!. If we fix any h linearly indepen-
dent points pl,...,p}, of A, then for any p in A,

lpp  w(p)
ot ﬁ(p’l)p’l' w(ph)| _ 0
(whp) ()
Expanding by the first row,
0 =U(p)G £ w(p) det(£(py)py, - - -, L(Ph)Ph)

for some integer G, so that ¢(p) is a divisor of

L = det(¢(py)py, - - - L(P})Ph)-

Since L < M", L has at most M¢ divisors, and there is a divisor ¢ of L such
that

l(p) =¢
for p in a subset F of A with

\F| > |A|M™.



Case 2(b). CD™'H > M~<. In this case, there are
< CD'H+1< CD*HM®
possible values of k(p). There is an integer k and a subset A; of A with
(2.11) |Ai| > |A|CT'DH M~
(2.12) k(p) = k for all p in A;.
In particular, the subset S of Z" consisting of solutions of
D'Bx=k (mod CD™')

contains {{(p)p : p € A;}. Now S is a translate Ao + R of the sublattice A
of Z" consisting of solutions of

D'Bx=0 (mod CD™).

It is easy to see that det Ag = CD™L.
The lattice Ay generated by py, (1p, . .., ¢h—_1P,_; is contained in Ay, since

D™ 'Bp, = CD 'wy, DleEjpj =CD'w; (j=1,...,h—1).
The index of A in Ay is

det A1 . C

= =D.
det AO CD-1

Hence we can write Ay as a union of D translates of A;. We conclude that
there is a Q in Z" and a subset Ay of A; such that

(2.13) (ppeQ+ A (peA),
(2.14) |Ay| > [A|DV > JAICTTH M,
from (2.11).

We now seek a hyperplane that contains many of the points ¢(p)p with
pin Ay. For n € Z, let

L, =Q +nly_1p,_, + Span {pov 0py, ... 7£h—2ph72}‘

9



If ny and n; are the smallest and largest integers for which L,, meets the ball
MK, then

M det(py, t1py,s - - -, bh—2Pp,_s)
C

Ng — N1 <
(by Lemma 2)

M"py|

< I

Since C' < |po| M, it follows that there is an n for which

{p € Ay : L(p)p € L,}| > |A|CM " |py| ™!
> |AJH M= pg |~

(from (2.14))
> |A|V—h/(h+1)M—h2/(h+l)—§
from the definition of H. Let

={pec Ay :{p)p€L,}

Since we are in Case 2, Span Az is R". We select linearly independent
points p,...,p) in As.

Recalling Lemma 3, for any p in As, there are real ty,...,t, with
(2.15) t ety =1,
(2.16) U(p)p = tl(PL)P) + - + tul(p})P),
Now
(p)p  w(p) ((p)p —kC'D
dot ﬁ(p’l)p’li wiph)| _ (PP —kCTID
(i), () o, —kC D
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(subtract B;/C times column j from column h + 1 for j = 1,...,h and use
(2.10), (2.12))

0 0
((ph)p, —kCD
— det (p1)p1‘ _0
((ph)p) —kCT'D

For the penultimate step, we subtract ¢; times row 2,...,%;, times row
h + 1 from row 1 and use (2.15), (2.16).

We can now argue as in Case 2 (a) to show that there is a subset C of
As, on which /(p) is constant, say ¢(p) = ¢, satisfying

’C’ > |.A3‘M*5 > ‘A|M*6(th>—h/(h+1).
Thus a subset C of A with the required properties exists in all cases.

Proof of Theorem 3. Let I denote the m-dimensional lattice Z" N W; let
Zi,...,xy, beabasisofI'. Letp,_.,...,p,, bechosenin Asothat p,...,p,,
is a basis of W. Let us write {(p;) = {;, w(p;) = w; (j =1,...,m). Thus

(2.17) =06 (j=2.....n).
We now write
p; =paxi+ -+ PimTm (J=1,...,m),
so that the pj, are integers. Let P be the matrix [¢;p;r]1<jt<m. Then
(2.18) det(l1py, ..., lmp,,) = | det P|det(xq, ..., Tm).

We now imitate the construction in the previous proof. Define the linear
function E; on W by the conditions

El(gjpj) = Wy (]zl,,m)
Let A; = Ey(x;), so that
Ei(oqxy + -+ ap@y) = Arag + -+ Ay,

Since
Ei(lipjrr + -+ UpjmTn) = E1(ip;) = wj,
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we have
Ay + -+ Alpim = w; (G =1,...,m).

If we solve for A; by Cramer’s rule, we obtain

det P;
2.19 | ===
(2.19) [Ail = 35 p
where P; is obtained from P by replacing column ¢ by a column with entries
wy, ..., Wy,. Clearly we may cancel /7' from numerator and denominator
on the right side of (2.19). This gives
B
A= —7F— B, €7),
(7" det P ( )
so that
(2.20) (" det P)Ey(p) €Z (p € A).
We observe that
det (¢ coilm
(221) |det P| — S ( 1p17 ) pm)

det(ml, . 7mm)
< det(glpl) s 7€mpm)

from (2.18).
Now let F} = f — Ey. If we write {(p)p in the form

((p)p = arlip, + - + amlmp,,,
then
det(bipy, - licap 1, UP)P P - bDy)

a;| =
o det(l1py, ..., lmD,,)
< A"
det(pla--.vpm)
by (1.6), (1.7). Hence
Am
2.22 e Fy(¢4;p,
(2.22) lp)p) < G5 maxIFi(lp)
Am
< Vv
det(pla'-me)
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for all p in A, by (1.8) and the definition of F}.
Given p in A, we now estimate the integer

k(p) = (7" det P(E1(¢(p)p) — w(p)).
We have

[k(p)| < & det P|(|Fy(¢(p)p)| + | (U(p)p) — w(P)])

Am
< 07" det P "

(by (2.22), (1.8))

<"y L, ATV

(by (221))
< Um—n—l—lAmv

by (1.7). Taking (1.9) into account, with C(h) suitably chosen, we have
|k(p)| < 1, and indeed k(p) = 0. We may now complete the proof by the
argument in Case 2 (a) of the preceding proof. The points (¢(p)p, w(p)) lie
in an m-dimensional subspace of R". In the role of the determinant in Case
2(a), we use

(p)p  w(p)

det g(pl)pl' w(p;)

4 (pm)pn; w(p,,)

3 A lemma with four alternatives.

In the present section we prove a lemma with four alternatives as a stage in
the proof of Theorem 1. I have arranged the proof in this way for comparison
with the ‘three alternatives lemma’ (Lemma 17B of [7]). The corresponding
result in [3] (formulated a little differently) is Lemma 7.7.

Lemma 5 Let h > 3,¢ > 0. Let N > C(h,¢€). Let A satisfy

(3.1) 1 < APF1I=(/20+e <z
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Let A = AVhzh 11 = A~V'7Zh and let ay, ay € R". Then either

(1) for every t, the set Ko+ A + t contains a point n*as + na, with
1<n<N;or

(i) there is a primitive point p in II and a natural number q with
(3.2) pl < N°.q < N°|p| 2, [|lqa:p| < N°~|p| ™" (i =1,2);
or

(#i) there is a pair of linearly independent points p,,py of 11, a natural
number q, and there are numbers a, B,0 < a < N°,1 < B < N, such that

(3-3) ]p1| ‘P2| < QQN(s_lBa
(3.4) g < a 2B72N*,

(35) |pj| qukaiH < a 'BT'N'TH0 (Z =12 (]’ k) = (17 2)’ (27 1));
or

(iv) there are three linearly independent points py, py, Py in Il with |p;| <
N°® (j =1,2,3) and a natural number q with

(36)  q<N°A% |gpja;l| < N°7'A* (i=1,2; j=1,2,3).
For the proof of Lemma 5, we require the following variant of Lemma 5

of [6].

Lemma 6 Let W be a subspace of R",dim W = 2, such that T = W NZ" is
a two-dimensional lattice. Let A be a set of primitive points p of I', | A| > 8.
Suppose that

(3.7) A2<|pl<A  (pe A

and e, e in R" and V4, Vy are such that

(3.8) 9A%V; <1 (j=1,2),

(3.9) pe; —vi(p)l <V;  (1=12 peA),

where v;(p) € Z. Then there are linearly independent points p,,p, of I' for
which

(3-10) |p1| |p2| < A2|A|_17
(3.11) max(|p; | [|po€;, [pol [IP1es]l) < V;AJATY (j=1,2).
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Proof. Let wq, wy be an orthonormal basis of W. We write each p in A as
p = (rcosa)w; + (rsina)wsy, r=r(p) >0, a = a(p) € [0,2m).
Now for some k, 0 < k < 3, there is a subset A’ of A having
A’ = |Al/4,
a(p) € [kr /2, (k+ 1)7/2] (pe A).

Let q, gy, 71, 72 be chosen in A’ so that «(q,) is least, a(q,) is greatest, and
a(ry) — a(ry) is positive and as small as possible. Clearly the a(p) (p € A)
are distinct, and

0 < det(ry, 7o) < A*(a(ry) — alry))
(3.12) < |A|7 A% (a(gy) — alq))
< A7 det(g;, go)-

Let C be the index in I' of the lattice I'y generated by q;, q,. Then
(3.13) CT CTy.
We introduce the linear functions E; : W — R defined by
Ej(ay) =vj(q1), Ej(g3) = vi(qy)
for j = 1,2. We observe that
(3.14) CEj(x) € Z (xel)

from (3.13).
Let fj(x) = xe; and F; = f; — E;. Then

[Fi(g)l <V (1<4,j<2)
from (3.9). Moreover, given p € A, p = x1q, + x2q,, we have

det(pa ql) < 4

2] = det(p, q,) <4 <
det<q17q2)

g < s €T pr—y
U= Set(gqy =4 1™

by (3.7) and the choice of q,, g,. Hence

(3.15) F(p)| < 8V,
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The integer

satisfies

k()] < C(1fi(p) —vi(p)| + |F3(P)]) <9CV;  (p e A)
from (3.9), (3.15).

Taking si, so to be a basis of I', we see that

_ det<q17 q2)

= 222 < et < A?
det(81,82) > de (q17q2) — )

and in view of (3.8),
|k;(p)| < 9A%V; < 1.

Hence k;(p) = 0. In particular,
(3.16) Ep) ez (=12

for all p in A’.
The set I'; of p in I satisfying (3.16) is clearly a two-dimensional lattice,
and indeed
det 'y < det(rq,7r2).

By Minkowski’s theorem, there are linearly independent points p;,p, in I'y
with
|p1||Ps| < det Ty < det(rq,72)

< A det(qy, ) < [A[A%

on taking into account (3.12), (3.7).
Now let u;; = Ej(p;). Then u;; is an integer, and

(3.17)

[P1| [P2€; — ;2] = |pi| [F(P2)]

det(p27q2) det(p27q1)
< P 92) CNPy 1)\
< Il (St 22 15y )+ 2 )

(by the argument leading to (3.15))
1| [Po| (1G] + |g1)V;

det(qy, g,)
< |AItAY;
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in view of (3.17). The same bound holds with p;,p, interchanged. This
completes the proof of Lemma 6.

Proof of Lemma 5. Suppose that alternative (i) does not hold. By a slight
variant of the proof of [3], Lemma 7.5, there are numbers a and B such that

(3.18) A< a< N,
(3.19) B> N'7°A~lq™!
and there is a set B of primitive points of II with
(3.20) a < |p| <2a (p € B),
(3.21) |B| > NB~'(log N) 2.

Further, for each p in B there are integers ¢ = q(p),v1 = v1(p), v2 = v2(P)
satisfying

(3.22) 1<q<a?B 2N
(3.23) (q,v1,v2) = 1, (q,v2) < N°a™',
(3.24) lga;p — vi| < a ' BTN (1 =1,2).

Let us write s = s(p) = (q,v2),7 =r(pP) = ¢s
we note that

(3.25) r>1,s>1rs<a 2B 2N,
(3.26) slrasp —v| < a 'BT2N°, (r,v) = 1,
(3.27) |sra;p — vy| < a 'BTAN (s,0) = 1,
(3.28) s < Noa™t,

There are now two cases to consider. Suppose first that
(3.29) B> N3

Take any p € B. Then alternative (i) holds with this choice of p and

q = q(p). For
¢ < a?B72N?Y < a72N? < |p|°N?
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by (3.22), (3.29), (3.20), while

||qalp|| < a—lB—QNQ—i+6 < a—lN—i+6
<|p| "N (i=1,2)

by (3.24), (3.29), (3.20).
Now suppose that (3.29) is false. Clearly (3.21) yields a subset B’ of B
with

IB|> BN~ > N>, U/2<r(p)<U<aB2N** (peB).
We apply Theorem 2 with €2 in place of e,
A=AY"B e=a,A"V" ((p)=r(p), w(p)=v(p).
Thus we may take

A=2AY"q, U< a2B72N?*,
V =a'B7IN° M =UA,

in view of (3.20), (3.25), (3.26). We must verify (1.2), (1.3). We have

(3.30) M4 AV <« UMt ANV NG
< a—h+1B—2hN2h—2+5A
< A2h+1N72+5 < N*(s

from (3.19), (3.18), (3.1). Moreover,
’A‘M—%? (th)—h/(h+1)

> Nl*JBfl(afhflB*2h72N2hA)fh/(h+1)
> N172h2/(h+1)féBthlahAfh/(thl)
> N2h72h2/(h+1)75A72h+17h/(h+1) > MO

from (3.21), (3.19), (3.18), (3.1). This establishes that (1.2), (1.3) hold. Thus
there is a subset A; of A with

|A| > M
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and r(p) = r for all p in A;.
We now use Theorem 3 to find a subset A, of A with

|Ay| > |AIM ™ > N B!

and r(p) = r for all p in A,. We take A, e, {(p),w(p), A, U,V and M as
above. We have 2 < m < h. Since A; consists of primitive points, we can
certainly take n > 2. It follows that

U1+manmV < thlAV < N*(S'

Having ‘fixed 7* on the set By = A™'/" A, in (3.25)(3.28), we now ‘fix 5.
In view of (3.20), (3.27), (3.28) we may apply Lemma 4 with B; in place of
A, e =ray, {(p) = s(p), w(p) = vi(p), and with

Z = (2a)!, U= N°"' V=a'B 2N,
where t is the dimension of Span B;. Now
ZU'VAN’ < (2a)'(N°a™)la ' B2N'HA
K AN« N
from (3.19), (3.18), (3.1). Thus there is a subset By of B; with
(3.31) |By| > |By|N° > N'7°B~1,
with s(p), and indeed ¢(p), constant throughout Bs:
q9(p) = ¢
If B, contains three linearly independent points, it is clear that alternative
(iv) of Lemma 5 holds. It remains to consider the case where W = Span B
has dimension 2. In that case, we apply Lemma 6 with €2 in place of e, A",
in place of A, taking e; = A~Y"qa; (j = 1,2), so that (3.7)—(3.9) hold with
A=2AY"q, V; =a 2B 2N?*I19,
The condition (3.8) is satisfied, since

AQ/hCLQ‘G < A2/h+2N—1+5 < N—5 (] _ 172>

from (3.19), (3.18), (3.1). Let p},p) be the independent points of W N Z"
provided by Lemma 6, and p; = A~Y/"p!. Then (3.3), (3.4), (3.5) follow from
(3.10), (3.31), (3.22), (3.11). Thus alternative (iii) holds, and the proof of
Lemma 5 is complete.
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4 Proof of Theorem 1.

Lemma 7 Leth>1,¢>0, N > C(h,e). Let A be an h-dimensional lattice
in R" with

Kon A = {0},
(4.1) d(A)"reE < N

For any a,,as in R, there is a natural number n < N such that
nlas +na; € Ko+ A.

Proof. This is Theorem 7.2 of [3]. It contains the admissibility of 1/(h?+ h)
as a special case, as we see on taking A = NV +h)—ezh, (The methods of
the present paper do not seem to be strong enough to sharpen Lemma 7 for
a general lattice.)

The following lemma is a refinement of [3], Lemma 7.9. We give the
proof in detail for the convenience of readers. The orthogonal complement
of a subspace T in R" is denoted by T.

Lemma 8 Let A be an h-dimensional lattice in R" with polar latice I1. Let IT'
be a t-dimensional lattice contained in 11, let T'= SpanIl’, and let py, ..., p,
be a linearly independent set in II'. Then there is a natural number c,

(4.2) ¢ < det(py,...,p,)/d(IT'),
having the following property. Given a in R", ca may be written in the form
(4.3) ca=~£+s+0b,

where £ € N, s € T+ and
@) < d) " max lpl oo [pial i B

Proof. Let A1,..., )\ be the successive minima of II" with respect to K,
and let q,,...,q; be linearly independent points of II' with |q;| = A;. By
Minkowski’s theorem,

(4.5) <y detlan - a) gl g

<v: A S am <t
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Arguing as in the proof of Lemma 7.8 of [3], we find points £1, ..., £; of v A
such that

lifi=y
(4.6) &qj = o .
0if ¢ # j.
Let wy, ..., w; be an orthonormal basis of T', and write

P; =Ppjiwi+ -+ PjWe, G = @jrwi + 0+ QiWy.
There are integers c;; such that
Up; = Cj1qy + o Tt Gy (J=1,...,t).
Write C' = [¢;5], ¢ = | det C|, and let C;; be the cofactor of ¢;; in C. Obviously

v'det(py,...,p,) = cdet(qy,...,q,).

Taking (4.5) into account, we obtain (4.2).
We now fix 7 and solve the ¢ equations

Cj1Q1i+~~+cjtqti=vpﬂ (izl,...,t)
for ¢;5 by Cramer’s rule. This yields

lqul - la ] 1Pl 1gesa| - - - 1ay]
det<q17 e 7qt)
< |p;l/lasl

st <

by (4.5). Tt follows that for 1 < i, r <t,

O < Pl - Pl [Pl - - - ||

wn T g g - ey

D] Pil |pi+1| . |pil la,]
d(11)

<

We are now ready to deduce the representation (4.3), (4.4). We have

vp,a = vr; + P,
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where z; € Z and P; < ||p;al|. That is,
cngia+---+epqa=vx; + P (j=1,...,1).
For a fixed 7, we multiply the j-th equation by C}; and add to get
cq;a = vy; + Vi,
where y; € Z and
Vi < max |Cj; Pj|
(4.8) y

|Qi|

in view of (4.7).
Define £ = v

(y1€1 + -+ - + yi#;); then £ € A and
q(ca—8)=vy; +V,—vy; =V, (i=1,...,1).

We now decompose ca — £ into

ca—L=b+s (beT,scTh)
and give a bound for |b|. We have

gb=q,b+s)=V, (i=1,...,t)
because q; € T'. Writing

b=bw+- -+ bwy,

we have the equations

b1+ +aqub =V, (i=1,...,1)
for by, ..., b;. Solving by Cramer’s rule,
(4.9) det(qy, ..., q.)b; = £(Q;Vi + -+ 4+ QyV4),

where @);; is the cofactor of ¢;; in [¢,5]. Now

(4.10) 1Qisl < I lal-
04
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We obtain
t

b < a(Ir)™! (H!w!) |q;|d() " max |p;| ... [py 1| Ipyall [Pyl - - - I
i=1 \ (i

on combining (4.8)—(4.10) and recalling (4.5). Now the lemma follows on a
further application of (4.5).

Proof of Theorem 1. Let € > 0, h > 3, N > C(h,e). Take a =
(a1,...,an), B=(B1,...,5) € R" Suppose that there is no natural number
n < N such that

(4.11) |loyn® + Bin|]| < N“¥ (i=1,...,h),

where ¢! = h?2 + h — 1/2. Write ay; = N¥“a, a; = N9 3, A = N¥~<Z".
Then there is no natural number n < N such that

TL20,2 + na, € Kg + A.

Moreover, A satisfies the hypotheses of Lemma 5 with A = N*¥~9_ Hence
one of the cases (ii), (iii) or (iv) must hold. We apply Lemma 8, taking I’
to be the lattice generated by p in Case (ii); by p,, p, in Case (iii); and by
D1, Py, P in Case (iv). Let A’ = ANT™. In each case, we have the inequality

d(A) < d(IT)A

whenever dim 7" < h ([3], Lemma 7.8). Our choices of a are a; = ¢‘a; for
1 = 1,2. We obtain the representation

cqg'a;=4£; +s;+b; (i=1,2),
where ¢; € A, s; € T+ and
(4.12) c< 1, |b] < |p|7|pg'ail
in Case (ii),
(4.13) ¢ < |py] |po| /d(IT), [bi] < d(I1) " [p, ] [[pog'al
in Case (iii),
(4.14) ¢ < |py| [pol |ps|/d(IT), [bs| < A1) Py |pol [IPsdaill
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in Case (iv). (We permit renumbering of the p, in Cases (iii), (iv).)
We now apply Lemma 8 in the space T, whose dimension we denote by
t. We replace € by €2, A by 2A’, a; by 2¢'"ts; and N by d(2A")"*1N°. Thus
if £ > 0 there is a natural number z,
(4.15) r < d2N)TIN® < d(IT)TT AP NG,
such that
22°%csy + 218, € 20N + K.
This implies
1
(4.16) 1?csy + 18 € A+ 3 K.
If t =0, we take x = 1. Of course (4.16) holds, since s; = s = 0.
Now let n = xzcq. We shall show that
(4.17) n < N7
(4.18) b < N0 (i =1,2).
Suppose for a moment that (4.17), (4.18) hold. We see that the natural
number n < N satisfies
n*a; +na; = 2%c(ly + 8o+ by) + x(€y + 81 + by)
= (2%csy + x8)) + (vcby + b)) + £,

where £ € A. Taking (4.16)—(4.18) into account,
nlay +na; € A+ K.

This contradicts our hypothesis. Hence there must be a solution of (4.11)
after all, and the proof is complete.
It remains to prove (4.17), (4.18). Consider Case (ii) first. Here t = h—1,

n = req < d(I)"AlgN°
< |p/"Atp| 2N° <« A"N? « N'7°
from (4.15), (4.12), (3.2), (3.1). Further
' by < d(IT)" AM|p| T g gpal|
< |p|hi—1Ahz‘|p|—2i+1N6—z’
< (AhN—l-‘r(S)i < ]\/'—57
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again from (4.15), (4.12), (3.2), (3.1).
Now consider Case (iii). Here t = h — 2,

n = zeq < d(I1)"— A, | |p,|d(IT) " a 2 B-2N >
< (Ip)| [po]) A a2 BN

from (4.15), (4.13), (3.4), and since
(4.19) d(Il') < |p1| [p,l-
Recalling (3.3),

n < (a2N71B)hflAhflanBfQNQJr(s
< a2h_4Bh_3N_h+3+§Ah_1
< Ah_1N5 < N1—5

since a < N°, B < N. Similarly,
2t by < d(IT) P AN (|py [ [py ) () Ty g lgpaail|
(from (4.15), (4.13))
< (|py| [po]) DT AG=Di (=2 p=2 N2)i=1 =1 yl=its
(from (4.19), (3.4), (3.5))
< ABDi(g2N=1B)(h=Di=1 (=2 g=2 \2)i=1,=1 g1 N1=i+d

< (Ah—1a2h—5Bh—3N—h+2+6)i < (Ah—lN—l—I—é)i
< N7°

from (3.3), (3.1).
Finally, consider Case (iv). Here t = h — 3. Suppose first that ¢ > 0.
Then

n=urcq K d(H,)h_ZAh_Qypl‘ 1P| ’pz‘d(nl>_lN6A2
< AhNJ < N176

from (4.15), (4.14), (3.6) and the bounds

(4.20) d(I) < |py||p,| Ips| < N°.
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Similarly,
2t by| < ()" TEACTIN ([py | py] |ps ) AI) " |py | [Pola [lapsal
(from (4.15), (4.14))

< AB=2)it2(i=1)+2 \ro—i

(from (4.20), (3.6))
< (AhN—l-i-(s)i < N_(S.
We argue a little differently in Case (iv) if h = 3, = 0. We have II"' =TI,

n=cq < |p1| |p2| ‘p3|d<H/)_1A2N6
< A’N° <« N7

from (4.14), (3.6), (4.20). Similarly,

¢ Hbil < (Ipil 1pol [ps])'™ d(IT) [Py | Ipolg" llapsas]
< Ai+2(i71)+2N7i+5 < N*(‘)‘

from (4.14), (3.6), (4.20). We have now obtained (4.17), (4.18) in all cases,
and the proof of Theorem 1 is complete.
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