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1 Introduction

Let ‖ . . . ‖ denote distance from the nearest integer. Various versions of
the following problem in simultaneous Diophantine approximation have been
studied since 1957, beginning with Danicic [5]. Given an integer h ≥ 2. we
seek a number θ having the following property, for every ε > 0 and every
pair α = (α1, . . . , αh), β = (β1, . . . , βh) in Rh:

For N > C(h, ε), there is an integer n, 1 ≤ n ≤ N , satisfying

‖n2αj + nβj‖ < N−θ+ε (j = 1, . . . , h).

It is convenient to say that θ is admissible for h quadratic polynomials if θ
possesses the above property. The best known result for general h is that

(1.1)
1

h2 + h
is admissible for h quadratic polynomials.

Most of the ideas leading to (1.1) occur in the lectures of W. M. Schmidt [7].
In particular [7] contains the corresponding result for the special case β = 0.
The finishing touches for (1.1) are in Baker [1], [2]; see also [3]. One should
note the correction in [4], which applies equally to Theorem 5.1 of [3]. This
theorem is used in proving (1.1) in [3], and again in the present paper.

Schäffer [6] was able to improve (1.1) in the case h = 2, showing that 2/11
is admissible for a pair of quadratic polynomials. The key to his improvement
is Lemma 4 of [6], which we need not restate here since it is essentially
subsumed under Theorems 2 and 3 below. Schäffer’s lemma is an ingenious
refinement of the ‘determinant argument’ of Schmidt. This is Lemma 18A
of [7], abstracted as Lemma 7.6 in [3] and repeated below as Lemma 4.

Theorems 2 and 3 will be applied to give the following modest improve-
ment of (1.1).
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Theorem 1 Let h ≥ 3. The number (h2 + h − 1/2)−1 is admissible for h
quadratic polynomials.

We now give a version of Schäffer’s lemma for Rh. We write ab for inner
product in Rh, and |a| = (aa)1/2. The constants C(h, ε), C(h) need not be
the same at each occurrence. The cardinality of a finite set E is denoted by
|E|.

Theorem 2 Let h ≥ 2, ε > 0, M > C(h, ε), A ≥ 1, U ≥ 1, UA ≤ M and
0 < V < 1, with

(1.2) Mh−1+εAV < 1.

Let e ∈ Rh. Let A be a subset of Zh, with

|A| > M2ε max(1, (MhV )h/(h+1)).

Suppose that, for p in A, we have

(1.3) |p| ≤ A,

and there are coprime integers `(p), w(p),

(1.4) 0 < `(p) ≤ U,

with

(1.5) |`(p)pe− w(p)| < V.

Then there is a subset C of A and a natural number ` such that

|C| ≥ |A|M−ε min(1, (MhV )−h/(h+1))

and `(p) = ` for all p in C.

In Theorem 3, we assume a somewhat similar situation but we suppose
that there is some ‘known repetition’ among the `(p). We use this to get a
‘lot of repetition’. The linear span of a set S in Rh is denoted by Span S.

Theorem 3 Let h ≥ 2, ε > 0, M > C(h, ε), A ≥ 1, U ≥ 1, UA ≤ M , 0 <
V < 1 and let e ∈ Rh. Let A be a subset of Zh, W = SpanA, dim W = m.
Suppose that, for each p in A,

(1.6) A/2 < |p| ≤ A,
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and there exist coprime integers `(p), w(p) satisfying

U/2 < `(p) ≤ U,(1.7)

|`(p)pe− w(p)| < V.(1.8)

Suppose that for some integer n, 2 ≤ n ≤ m with

(1.9) C(h)U1+m−nAmV < 1

for a suitable positive C(h), there are linearly independent p1, . . . ,pn in A
with `(p1) = `(p2) = · · · = `(pn). Then there is a subset C of A and a
natural number `′ such that

|C| > |A|M−ε

and `(p) = `′ for all p in C.

Lemma 4 of [6] is essentially equivalent to the cases h = 2 of Theorems 3
and 4, taken together.

2 Proofs of Theorems 2 and 3.

As in [3], the determinant of t vectors a1, . . . ,at in Rh, where 1 ≤ t ≤ h, is
the t-dimensional volume of the parallellepiped{

t∑
i=1

yiai : 0 ≤ y1, . . . , yt ≤ 1

}
and is denoted by det(a1, . . . ,at). Note that

det(a1, . . . ,at)
2 = det{aiaj : 1 ≤ i, j ≤ t}

is an integer whenever a1, . . . ,at are in Zh; compare [8], equation (2.1), p.
4. If a1, . . . ,at are linearly independent, and

Λ =

{
t∑

i=1

niai : n1, . . . , nt ∈ Z

}
is the t-dimensional lattice generated by a1, . . . ,at, then the determinant of
Λ is defined to be

d(Λ) = det(a1, . . . ,at).

The unit ball in Rh is denoted by K0.
We begin with a few observations from linear algebra.
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Lemma 1 Let v0, v1, . . . ,vh be in Rh, v0 6= 0. Then

det(v1, . . . ,vh) ≤ h max

(
|v1|
|v0|

, . . . ,
|vh|
|v0|

)
max

i
det(v0, v1, . . . ,vi−1, vi+1, . . . ,vh).

Proof. Evidently we may suppose that |v0| = 1 and, after applying a linear
isometry to Rh, that v0 = (1, 0, . . . , 0). Let vi = (vi1, . . . , vih), and let Mi be
the cofactor of vi1 in the matrix A = [vij : 1 ≤ i, j ≤ h]. Then

(2.1) det(v1, . . . ,vh) ≤
h∑

i=1

|vi1Mi| ≤ h max
i
|vi|max

i
|Mi|.

Now consider the matrix Ai obtained by replacing row i of A by v0. We have

(2.2) det(v0, v1, . . . ,vi−1, vi+1, . . . ,vh) = | det Ai| = |Mi|.

The lemma follows from (2.1), (2.2).

Lemma 2 Let x1, . . . ,xh be linearly independent in Rh. The distance be-
tween parallel hyperplanes

c + aixh + Span {x1, . . . ,xh−1} (i = 1, 2)

is

|a1 − a2|
det(x1, . . . ,xh−1, xh)

det(x1, . . . ,xh−1)
.

Proof. It suffices to show that the distance d from xh to Span{x1, . . . ,xh−1}
is

det(x1, . . . ,xh)

det(x1, . . . ,xh−1)
.

We use the Gram-Schmidt process to replace x1, . . . ,xh by an orthogonal set

v1 = x1, v2 = x2 −
x2 · v1

v1 · v1

v1

and so on. Note that

det(x1, . . . ,xi) = det(v1, . . . ,vi) = |v1| . . . |vi| (i = 1, . . . , h).

Hence

d = |vh| =
det(v1, . . . ,vh)

det(v1, . . . ,vh−1)
=

det(x1, . . . ,xh)

det(x1, . . . ,xh−1)
.
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Lemma 3 Let x1, . . . ,xh be linearly independent points of a hyperplane with
equation

ax = b

in Rh. Then for any x in the hyperplane, we have

(2.3) x = t1x1 + · · ·+ thxh

with t1 + · · ·+ th = 1.

Proof. We may define t1, . . . , th uniquely via (2.3). On each side of (2.3),
take the inner product with a:

b = ax = t1ax1 + · · ·+ thaxh

= (t1 + · · ·+ th)b.

Since b 6= 0 by independence of x1, . . . ,xh, the lemma follows.
Throughout the remainder of the paper, constants implied by � depend

at most on h and ε. We suppose (as we may) that ε is sufficiently small. A
quantity of the form C(h)ε2 is denoted by δ.

Lemma 4 Let N > C(h, ε). Let Λ be an h-dimensional lattice in Rh with
d(Λ) = D ≤ N2 and Λ∩K0 = {0}. Let Π be the dual lattice of Λ. Let A be a
subset of Π with |p| ≤ N for all p in A. Suppose that SpanA has dimension
t, and that any t vectors in A have determinant ≤ Z. Let e ∈ Rh. Let U, V
be positive numbers, U ≤ N , such that for any p in A there are coprime
integers `(p), w(p) satisfying

1 ≤ `(p) ≤ U, |`(p)ep− w(p)| < V.

Suppose further that
ZU tV DN ε ≤ 1.

Then there is an integer ` and a subset C of A with |C| ≥ |A|N−δ, `(p) = `
for all p in C.

Proof. As noted above, this is Lemma 7.6 of [3].

Proof of Theorem 2. There are two cases to consider.

Case 1. There is a subset E of A with

|E| > |A|M−ε/2 min(1, (MhV )−h/(h+1)),
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such that Span E has dimension t ≤ h− 1.
We apply Lemma 4 with Λ = Π = Zh, D = 1, N = M and E , ε2 in place

of A, ε. Clearly we may take
Z = At.

Now

ZU tV DN ε2 � AtU tV M ε2

� Mh−1+ε2V � M−ε2 .

Hence there is a subset C of E and a natural number ` such that

|C| ≥ |E|M−δ > |A|M−ε min(1, (MhV )−h/(h+1))

and `(p) = ` for all p in C.

Case 2. Case 1 does not hold.

It is convenient to write

f(x) = xe, R = (M/V )1/(h+1).

By Dirichlet’s theorem, there is a point p0 in Zh and an integer w0 such that

(2.4) 0 < |p0| ≤ R, |f(p0)− w0| � R−h.

We choose p1, . . . ,ph−1 in A to maximize

C = det(p0, `(p1)p1, . . . , `(ph−1)ph−1).

Since we are in Case 2, we have SpanA = Rh and C > 0. Let us write

`j = `(pj), wj = w(pj) (j = 1, . . . , h).

We note that

(2.5) det(p0, `1p1, . . . , `j−1pj−1, `(p)p, `j+1pj+1, . . . , `h−1ph−1) ≤ C

for all p in A, by choice of p1, . . . ,ph−1, while

(2.6) det(`(p)p, `1p1, . . . , `h−1ph−1) �
M

|p0|
C
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by Lemma 1, (2.5), (1.3) and (1.4).
It follows from (2.5), (2.6) and Cramer’s rule that if we write `(p)p in

the form

(2.7) `(p)p = y0p0 + y1p1 + · · ·+ yh−1ph−1,

then

(2.8) |yi| ≤ 1 (i = 1, . . . , h− 1), |y0| �
M

|p0|
.

Let E(x) be the linear function on Rh for which

E(p0) = w0, E(`jpj) = wj (j = 1, . . . , h− 1).

Then E takes the form

E(x) =
1

C
Bx

with B = (B1, . . . , Bh) ∈ Zh. Let us write

gcd (B1, . . . , Bh, C) = D

for the greatest common divisor of B1, . . . , Bh and C.
Now consider the linear function

F = f − E.

We have

F (p0) = f(p0)− w0 � R−h,

F (`jpj) = f(`jpj)− wj � V (j = 1, . . . , h− 1),

from (2.4), (1.5). Taking into account (2.7), (2.8),

F (`(p)p) � M

|p0|
R−h + V(2.9)

� |p0|−1(MR−h + RV )

� |p0|−1M1/(h+1)V h/(h+1)

for all p in A. It is convenient to define

H = |p0|−1M1/(h+1)V h/(h+1);
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the above calculation gives V � H.
We can now give a bound for the integer

(2.10) k(p) = CD−1(E(`(p)p)− w(p)).

We have

k(p) = CD−1(−F (`(p)p) + f(`(p)p)− w(p))

� CD−1(H + V ) � CD−1H

from (2.9), (1.5).
Next we distinguish two subcases of Case 2.

Case 2(a). CD−1H < M−ε2 . In this case k(p) = 0 for all p in A. The
points

(`(p)p, w(p))

lie in an h-dimensional hyperplane in Rh+1. If we fix any h linearly indepen-
dent points p′1, . . . ,p

′
h of A, then for any p in A,

det


`(p)p w(p)
`(p′1)p

′
1 w(p′1)
...

`(p′h)p
′
h w(p′h)

 = 0.

Expanding by the first row,

0 = `(p)G± w(p) det(`(p′1)p
′
1, . . . , `(p

′
h)p

′
h)

for some integer G, so that `(p) is a divisor of

L = det(`(p′1)p
′
1, . . . , `(p

′
h)p

′
h).

Since L ≤ Mh, L has at most M ε divisors, and there is a divisor ` of L such
that

`(p) = `

for p in a subset F of A with

|F| > |A|M−ε.
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Case 2(b). CD−1H ≥ M−ε2 . In this case, there are

� CD−1H + 1 � CD−1HM ε2

possible values of k(p). There is an integer k and a subset A1 of A with

|A1| � |A|C−1DH−1M−ε2 ,(2.11)

k(p) = k for all p in A1.(2.12)

In particular, the subset S of Zh consisting of solutions of

D−1Bx ≡ k (mod CD−1)

contains {`(p)p : p ∈ A1}. Now S is a translate Λ0 + R of the sublattice Λ0

of Zh consisting of solutions of

D−1Bx ≡ 0 (mod CD−1).

It is easy to see that det Λ0 = CD−1.
The lattice Λ1 generated by p0, `1p, . . . , `h−1ph−1 is contained in Λ0, since

D−1Bp0 = CD−1w0, D
−1B`jpj = CD−1wj (j = 1, . . . , h− 1).

The index of Λ1 in Λ0 is

det Λ1

det Λ0

=
C

CD−1
= D.

Hence we can write Λ0 as a union of D translates of Λ1. We conclude that
there is a Q in Zh and a subset A2 of A1 such that

`(p)p ∈ Q + Λ1 (p ∈ A2),(2.13)

|A2| ≥ |A1|D−1 � |A|C−1H−1M−ε2 ,(2.14)

from (2.11).
We now seek a hyperplane that contains many of the points `(p)p with

p in A2. For n ∈ Z, let

Ln = Q + n`h−1ph−1 + Span {p0, `1p1, . . . , `h−2ph−2}.
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If n0 and n1 are the smallest and largest integers for which Ln meets the ball
MK0, then

n0 − n1 �
M det(p0, `1p1, . . . , `h−2ph−2)

C

(by Lemma 2)

� Mh−1|p0|
C

.

Since C ≤ |p0|Mh−1, it follows that there is an n for which

|{p ∈ A2 : `(p)p ∈ Ln}| � |A2|CM−h+1|p0|−1

� |A|H−1M−h+1−δ|p0|−1

(from (2.14))

� |A|V −h/(h+1)M−h2/(h+1)−δ

from the definition of H. Let

A3 = {p ∈ A2 : `(p)p ∈ Ln}.

Since we are in Case 2, SpanA3 is Rh. We select linearly independent
points p′1, . . . ,p

′
h in A3.

Recalling Lemma 3, for any p in A3, there are real t1, . . . , th with

t1 + · · ·+ th = 1,(2.15)

`(p)p = t1`(p
′
1)p

′
1 + · · ·+ th`(p

′
h)p

′
h.(2.16)

Now

det


`(p)p w(p)
`(p′1)p

′
1 w(p′1)
...

`(p′h)p
′
h w(p′h)

 = det


`(p)p −kC−1D
`(p′1)p

′
1 −kC−1D
...

`(p′h)p
′
h −kC−1D


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(subtract Bj/C times column j from column h + 1 for j = 1, . . . , h and use
(2.10), (2.12))

= det


0 0

`(p′1)p
′
1 −kC−1D
...

`(p′h)p
′
h −kC−1D

 = 0.

For the penultimate step, we subtract t1 times row 2, . . . , th times row
h + 1 from row 1 and use (2.15), (2.16).

We can now argue as in Case 2 (a) to show that there is a subset C of
A3, on which `(p) is constant, say `(p) = `′, satisfying

|C| ≥ |A3|M−δ ≥ |A|M−ε(MhV )−h/(h+1).

Thus a subset C of A with the required properties exists in all cases.

Proof of Theorem 3. Let Γ denote the m-dimensional lattice Zh ∩W ; let
x1, . . . ,xm be a basis of Γ. Let pn+1, . . . ,pm be chosen inA so that p1, . . . ,pm

is a basis of W . Let us write `(pj) = `j, w(pj) = wj (j = 1, . . . ,m). Thus

(2.17) `j = `1 (j = 2, . . . , n).

We now write

pj = pj1x1 + · · ·+ pjmxm (j = 1, . . . ,m),

so that the pjk are integers. Let P be the matrix [`jpjk]1≤j,k≤m. Then

(2.18) det(`1p1, . . . , `mpm) = | det P | det(x1, . . . ,xm).

We now imitate the construction in the previous proof. Define the linear
function E1 on W by the conditions

E1(`jpj) = wj (j = 1, . . . ,m).

Let Aj = E1(xj), so that

E1(α1x1 + · · ·+ αmxm) = A1α1 + · · ·+ Amαm.

Since
E1(`jpj1x1 + · · ·+ `jpjmxm) = E1(`jpj) = wj,
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we have
A1`jpj1 + · · ·+ Am`jpjm = wj (j = 1, . . . ,m).

If we solve for Ai by Cramer’s rule, we obtain

(2.19) |Ai| =
det Pi

det P
,

where Pi is obtained from P by replacing column i by a column with entries
w1, . . . , wm. Clearly we may cancel `n−1

1 from numerator and denominator
on the right side of (2.19). This gives

Ai =
Bi

`−n+1
1 det P

(Bi ∈ Z),

so that

(2.20) `−n+1
1 (det P )E1(p) ∈ Z (p ∈ A).

We observe that

| det P | = det(`1p1, . . . , `mpm)

det(x1, . . . ,xm)
(2.21)

� det(`1p1, . . . , `mpm)

from (2.18).
Now let F1 = f − E1. If we write `(p)p in the form

`(p)p = α1`1p1 + · · ·+ αm`mpm,

then

|αi| =
det(`1p1, . . . , `i−1pi−1, `(p)p, `i+1pi+1, . . . , `mpm)

det(`1p1, . . . , `mpm)

� Am

det(p1, . . . ,pm)

by (1.6), (1.7). Hence

F1(`(p)p) � Am

det(p1, . . . ,pm)
max

i
|F1(`ipi)|(2.22)

� Am

det(p1, . . . ,pm)
V
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for all p in A, by (1.8) and the definition of F1.
Given p in A, we now estimate the integer

k(p) = `−n+1
1 det P (E1(`(p)p)− w(p)).

We have

|k(p)| ≤ `−n+1
1 | det P |(|F1(`(p)p)|+ |f(`(p)p)− w(p)|)

� `−n+1
1 | det P | Am

det(p1, . . . ,pm)
V

(by (2.22), (1.8))

� `−n+1
1 `1 . . . `mAmV

(by (2.21))

� Um−n+1AmV

by (1.7). Taking (1.9) into account, with C(h) suitably chosen, we have
|k(p)| < 1, and indeed k(p) = 0. We may now complete the proof by the
argument in Case 2 (a) of the preceding proof. The points (`(p)p, w(p)) lie
in an m-dimensional subspace of Rh. In the role of the determinant in Case
2(a), we use

det


`(p)p w(p)

`(p1)p1 w(p1)
...

`(pm)pm w(pm)

 .

3 A lemma with four alternatives.

In the present section we prove a lemma with four alternatives as a stage in
the proof of Theorem 1. I have arranged the proof in this way for comparison
with the ‘three alternatives lemma’ (Lemma 17B of [7]). The corresponding
result in [3] (formulated a little differently) is Lemma 7.7.

Lemma 5 Let h ≥ 3, ε > 0. Let N ≥ C(h, ε). Let ∆ satisfy

(3.1) 1 ≤ ∆h+1−(1/2h)+ε ≤ N.
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Let Λ = ∆1/hZh, Π = ∆−1/hZh, and let a1, a2 ∈ Rh. Then either

(i) for every t, the set K0 + Λ + t contains a point n2a2 + na1 with
1 ≤ n ≤ N ; or

(ii) there is a primitive point p in Π and a natural number q with

(3.2) |p| < N δ, q < N δ|p|−2, ‖qaip‖ < N δ−i|p|−1 (i = 1, 2);

or

(iii) there is a pair of linearly independent points p1, p2 of Π, a natural
number q, and there are numbers a, B, 0 < a < N δ, 1 < B < N , such that

|p1| |p2| � a2N δ−1B,(3.3)

q � a−2B−2N2+δ,(3.4)

|pj| ‖qpkai‖ � a−1B−1N1−i+δ (i = 1, 2; (j, k) = (1, 2), (2, 1));(3.5)

or

(iv) there are three linearly independent points p1, p2, p3 in Π with |pj| <
N δ (j = 1, 2, 3) and a natural number q with

(3.6) q < N δ∆2, ‖qpjai‖ < N δ−i∆2 (i = 1, 2; j = 1, 2, 3).

For the proof of Lemma 5, we require the following variant of Lemma 5
of [6].

Lemma 6 Let W be a subspace of Rh, dim W = 2, such that Γ = W ∩Zh is
a two-dimensional lattice. Let A be a set of primitive points p of Γ, |A| ≥ 8.
Suppose that

(3.7) A/2 < |p| ≤ A (p ∈ A)

and e1, e2 in Rh and V1, V2 are such that

9A2Vj < 1 (j = 1, 2),(3.8)

|pej − vj(p)| < Vj (j = 1, 2, p ∈ A),(3.9)

where vj(p) ∈ Z. Then there are linearly independent points p1, p2 of Γ for
which

|p1| |p2| � A2|A|−1,(3.10)

max(|p1| ‖p2ej‖, |p2| ‖p1ej‖) � VjA|A|−1 (j = 1, 2).(3.11)
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Proof. Let w1, w2 be an orthonormal basis of W . We write each p in A as

p = (r cos α)w1 + (r sin α)w2, r = r(p) > 0, α = α(p) ∈ [0, 2π).

Now for some k, 0 ≤ k ≤ 3, there is a subset A′ of A having

|A′| ≥ |A|/4,

α(p) ∈ [kπ/2, (k + 1)π/2] (p ∈ A′).

Let q1, q2, r1, r2 be chosen in A′ so that α(q1) is least, α(q2) is greatest, and
α(r2)−α(r1) is positive and as small as possible. Clearly the α(p) (p ∈ A′)
are distinct, and

0 < det(r1, r2) � A2(α(r2)− α(r1))

� |A|−1A2(α(q2)− α(q1))

� |A|−1 det(q1, q2).

(3.12)

Let C be the index in Γ of the lattice Γ0 generated by q1, q2. Then

(3.13) CΓ ⊂ Γ0.

We introduce the linear functions Ej : W → R defined by

Ej(q1) = vj(q1), Ej(q2) = vj(q2)

for j = 1, 2. We observe that

(3.14) CEj(x) ∈ Z (x ∈ Γ)

from (3.13).
Let fj(x) = xej and Fj = fj − Ej. Then

|Fj(qi)| < Vj (1 ≤ i, j ≤ 2)

from (3.9). Moreover, given p ∈ A′, p = x1q1 + x2q2, we have

|x1| =
det(p, q2)

det(q1, q2)
≤ 4, |x2| =

det(p, q1)

det(q1, q2)
≤ 4

by (3.7) and the choice of q1, q2. Hence

(3.15) |Fj(p)| < 8Vj.
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The integer

kj(p) = C(Ej(p)− vj(p))

satisfies

|kj(p)| ≤ C(|fj(p)− vj(p)|+ |Fj(p)|) < 9CVj (p ∈ A′)

from (3.9), (3.15).
Taking s1, s2 to be a basis of Γ, we see that

C =
det(q1, q2)

det(s1, s2)
≤ det(q1, q2) ≤ A2,

and in view of (3.8),
|kj(p)| < 9A2Vj < 1.

Hence kj(p) = 0. In particular,

(3.16) Ej(p) ∈ Z (j = 1, 2)

for all p in A′.
The set Γ1 of p in Γ satisfying (3.16) is clearly a two-dimensional lattice,

and indeed
det Γ1 ≤ det(r1, r2).

By Minkowski’s theorem, there are linearly independent points p1, p2 in Γ1

with

|p1| |p2| � det Γ1 ≤ det(r1, r2)

� |A|−1 det(q1, q2) � |A|−1A2,
(3.17)

on taking into account (3.12), (3.7).
Now let uj,i = Ej(pi). Then uj,i is an integer, and

|p1| |p2ej − uj,2| = |p1| |Fj(p2)|

≤ |p1|
(

det(p2, q2)

det(q1, q2)
|Fj(q1)|+

det(p2, q1)

det(q1, q2)
|Fj(q2)|

)
(by the argument leading to (3.15))

≤ |p1| |p2|(|q2|+ |q1|)Vj

det(q1, q2)

� |A|−1AVj
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in view of (3.17). The same bound holds with p1, p2 interchanged. This
completes the proof of Lemma 6.

Proof of Lemma 5. Suppose that alternative (i) does not hold. By a slight
variant of the proof of [3], Lemma 7.5, there are numbers a and B such that

∆−1 � a � N δ,(3.18)

B � N1−δ∆−1a−1,(3.19)

and there is a set B of primitive points of Π with

a < |p| ≤ 2a (p ∈ B),(3.20)

|B| � NB−1(log N)−2.(3.21)

Further, for each p in B there are integers q = q(p), v1 = v1(p), v2 = v2(p)
satisfying

1 ≤ q < a−2B−2N2+δ,(3.22)

(q, v1, v2) = 1, (q, v2) < N δa−1,(3.23)

|qaip− vi| < a−1B−2N2−i+δ (i = 1, 2).(3.24)

Let us write s = s(p) = (q, v2), r = r(p) = qs−1, v = v(p) = v2s
−1. Then

we note that

r ≥ 1, s ≥ 1, rs < a−2B−2N2+δ,(3.25)

s|ra2p− v| < a−1B−2N δ, (r, v) = 1,(3.26)

|sra1p− v1| < a−1B−2N1+δ, (s, v1) = 1,(3.27)

s < N δa−1.(3.28)

There are now two cases to consider. Suppose first that

(3.29) B ≥ N1−3ε2 .

Take any p ∈ B. Then alternative (ii) holds with this choice of p and
q = q(p). For

q < a−2B−2N2+δ < a−2N δ < |p|−2N δ
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by (3.22), (3.29), (3.20), while

‖qaip‖ < a−1B−2N2−i+δ < a−1N−i+δ

< |p|−1N−i+δ (i = 1, 2)

by (3.24), (3.29), (3.20).
Now suppose that (3.29) is false. Clearly (3.21) yields a subset B′ of B

with

|B′| ≥ |B|N−ε2 ≥ N2ε2 , U/2 < r(p) ≤ U < a−2B−2N2+δ (p ∈ B′).

We apply Theorem 2 with ε2 in place of ε,

A = ∆1/hB′, e = a2∆
−1/h, `(p) = r(p), w(p) = v(p).

Thus we may take

A = 2∆1/ha, U < a−2B−2N2+δ,

V = a−1B−2N δ, M = UA,

in view of (3.20), (3.25), (3.26). We must verify (1.2), (1.3). We have

Mh−1+ε2AV � Uh−1AhV N δ(3.30)

� a−h+1B−2hN2h−2+δ∆

� ∆2h+1N−2+δ � N−δ

from (3.19), (3.18), (3.1). Moreover,

|A|M−2ε2(MhV )−h/(h+1)

� N1−δB−1(a−h−1B−2h−2N2h∆)−h/(h+1)

� N1−2h2/(h+1)−δB2h−1ah∆−h/(h+1)

� N2h−2h2/(h+1)−δ∆−2h+1−h/(h+1) � M δ

from (3.21), (3.19), (3.18), (3.1). This establishes that (1.2), (1.3) hold. Thus
there is a subset A1 of A with

|A1| � M2ε2

18



and r(p) = r for all p in A1.
We now use Theorem 3 to find a subset A2 of A with

|A2| � |A|M−δ � N1−δB−1

and r(p) = r for all p in A2. We take A, e, `(p), w(p), A, U, V and M as
above. We have 2 ≤ m ≤ h. Since A1 consists of primitive points, we can
certainly take n ≥ 2. It follows that

U1+m−nAmV � Mh−1AV � N−δ.

Having ‘fixed r’ on the set B1 = ∆−1/hA2 in (3.25)–(3.28), we now ‘fix s’.
In view of (3.20), (3.27), (3.28) we may apply Lemma 4 with B1 in place of
A, e = ra1, `(p) = s(p), w(p) = v1(p), and with

Z = (2a)t, U = N δa−1, V = a−1B−2N1+δ,

where t is the dimension of SpanB1. Now

ZU tV ∆N δ � (2a)t(N δa−1)ta−1B−2N1+δ∆

� ∆3N−1+δ � N−δ

from (3.19), (3.18), (3.1). Thus there is a subset B2 of B1 with

(3.31) |B2| � |B1|N−δ � N1−δB−1,

with s(p), and indeed q(p), constant throughout B2:

q(p) = q.

If B2 contains three linearly independent points, it is clear that alternative
(iv) of Lemma 5 holds. It remains to consider the case where W = SpanB2

has dimension 2. In that case, we apply Lemma 6 with ε2 in place of ε, ∆1/hB2

in place of A, taking ej = ∆−1/hqaj (j = 1, 2), so that (3.7)–(3.9) hold with

A = 2∆1/ha, Vj = a−2B−2N2−j+δ.

The condition (3.8) is satisfied, since

∆2/ha2Vj � ∆2/h+2N−1+δ � N−δ (j = 1, 2)

from (3.19), (3.18), (3.1). Let p′1, p
′
2 be the independent points of W ∩ Zh

provided by Lemma 6, and pi = ∆−1/hp′i. Then (3.3), (3.4), (3.5) follow from
(3.10), (3.31), (3.22), (3.11). Thus alternative (iii) holds, and the proof of
Lemma 5 is complete.
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4 Proof of Theorem 1.

Lemma 7 Let h ≥ 1, ε > 0, N > C(h, ε). Let Λ be an h-dimensional lattice
in Rh with

K0 ∩ Λ = {0},
d(Λ)h+1+ε ≤ N.(4.1)

For any a1, a2 in Rh, there is a natural number n ≤ N such that

n2a2 + na1 ∈ K0 + Λ.

Proof. This is Theorem 7.2 of [3]. It contains the admissibility of 1/(h2 +h)
as a special case, as we see on taking Λ = N1/(h2+h)−εZh. (The methods of
the present paper do not seem to be strong enough to sharpen Lemma 7 for
a general lattice.)

The following lemma is a refinement of [3], Lemma 7.9. We give the
proof in detail for the convenience of readers. The orthogonal complement
of a subspace T in Rh is denoted by T⊥.

Lemma 8 Let Λ be an h-dimensional lattice in Rh with polar latice Π. Let Π′

be a t-dimensional lattice contained in Π, let T = Span Π′, and let p1, . . . ,pt

be a linearly independent set in Π′. Then there is a natural number c,

(4.2) c � det(p1, . . . ,pt)/d(Π′),

having the following property. Given a in Rh, ca may be written in the form

(4.3) ca = ` + s + b,

where ` ∈ Λ, s ∈ T⊥ and

(4.4) |b| � d(Π′)−1 max
1≤i≤t

|p1| . . . |pi−1| ‖pia‖ |pi+1| . . . |pt|.

Proof. Let λ1, . . . , λt be the successive minima of Π′ with respect to K0

and let q1, . . . , qt be linearly independent points of Π′ with |qj| = λj. By
Minkowski’s theorem,

(4.5) 1 ≤ v :=
det(q1, . . . , qt)

d(Π′)
≤ |q1| . . . |qt|

d(Π′)
� 1.
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Arguing as in the proof of Lemma 7.8 of [3], we find points `1, . . . , `t of v−1Λ
such that

(4.6) `iqj =

{
1 if i = j

0 if i 6= j.

Let w1, . . . ,wt be an orthonormal basis of T , and write

pj = pj1w1 + · · ·+ pjtwt, qj = qj1w1 + · · ·+ qjtwt.

There are integers cij such that

vpj = cj1q1 + · · ·+ cjtqt (j = 1, . . . , t).

Write C = [cij], c = | det C|, and let Cij be the cofactor of cij in C. Obviously

vt det(p1, . . . ,pt) = c det(q1, . . . , qt).

Taking (4.5) into account, we obtain (4.2).
We now fix j and solve the t equations

cj1q1i + · · ·+ cjtqti = vpji (i = 1, . . . , t)

for cjs by Cramer’s rule. This yields

cjs �
|q1| . . . |qs−1| |pj| |qs+1| . . . |qt|

det(q1, . . . , qt)

� |pj|/|qs|

by (4.5). It follows that for 1 ≤ i, r ≤ t,

Cir �
|p1| . . . |pi−1| |pi+1| . . . |pt|
|q1| . . . |qr−1| |qr+1| . . . |qt|

�
|p1| . . . |pi−1| |pi+1| . . . |pt| |qr|

d(Π′)
.

(4.7)

We are now ready to deduce the representation (4.3), (4.4). We have

vpja = vxj + Pj,
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where xj ∈ Z and Pj � ‖pja‖. That is,

cj1q1a + · · ·+ cjtqta = vxj + Pj (j = 1, . . . , t).

For a fixed i, we multiply the j-th equation by Cji and add to get

cqia = vyi + Vi,

where yi ∈ Z and

Vi � max
j
|CjiPj|

� |qi|
d(Π′)

max
j
|p1| . . . |pj−1| ‖pja‖ |pj+1| . . . |pt|

(4.8)

in view of (4.7).
Define ` = v(y1`1 + · · ·+ yt`t); then ` ∈ Λ and

qi(ca− `) = vyi + Vi − vyi = Vi (i = 1, . . . , t).

We now decompose ca− ` into

ca− ` = b + s (b ∈ T, s ∈ T⊥)

and give a bound for |b|. We have

qib = qi(b + s) = Vi (i = 1, . . . , t)

because qi ∈ T . Writing

b = b1w1 + · · ·+ btwt,

we have the equations

qi1b1 + · · ·+ qitbt = Vi (i = 1, . . . , t)

for b1, . . . , bt. Solving by Cramer’s rule,

(4.9) det(q1, . . . , qt)bj = ±(Q1jV1 + · · ·+ QtjVt),

where Qij is the cofactor of qij in [qrs]. Now

(4.10) |Qij| �
∏
` 6=i

|q`|.
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We obtain

|bj| � d(Π′)−1

t∑
i=1

(∏
` 6=i

|q`|

)
|qi|d(Π′)−1 max

k
|pi| . . . |pk−1| ‖pka‖ |pk+1| . . . |pt|

on combining (4.8)–(4.10) and recalling (4.5). Now the lemma follows on a
further application of (4.5).

Proof of Theorem 1. Let ε > 0, h ≥ 3, N > C(h, ε). Take α =
(α1, . . . , αh), β = (β1, . . . , βh) ∈ Rh. Suppose that there is no natural number
n ≤ N such that

(4.11) ‖αin
2 + βin‖ < N ε−ϕ (i = 1, . . . , h),

where ϕ−1 = h2 + h − 1/2. Write a2 = Nϕ−εα, a1 = Nϕ−εβ, Λ = Nϕ−εZh.
Then there is no natural number n ≤ N such that

n2a2 + na1 ∈ K0 + Λ.

Moreover, Λ satisfies the hypotheses of Lemma 5 with ∆ = Nh(ϕ−ε). Hence
one of the cases (ii), (iii) or (iv) must hold. We apply Lemma 8, taking Π′

to be the lattice generated by p in Case (ii); by p1, p2 in Case (iii); and by
p1, p2, p3 in Case (iv). Let Λ′ = Λ∩T⊥. In each case, we have the inequality

d(Λ′) � d(Π′)∆

whenever dim T < h ([3], Lemma 7.8). Our choices of a are ai = qiai for
i = 1, 2. We obtain the representation

cqiai = `i + si + bi (i = 1, 2),

where `i ∈ Λ, si ∈ T⊥ and

(4.12) c � 1, |bi| � |p|−1‖pqiai‖

in Case (ii),

(4.13) c � |p1| |p2|/d(Π′), |bi| � d(Π′)−1|p1| ‖p2q
ia‖

in Case (iii),

(4.14) c � |p1| |p2| |p3|/d(Π′), |bi| � d(Π′)−1|p1| |p2| ‖p3q
iai‖
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in Case (iv). (We permit renumbering of the pi in Cases (iii), (iv).)
We now apply Lemma 8 in the space T⊥, whose dimension we denote by

t. We replace ε by ε2, Λ by 2Λ′, ai by 2ci−1si and N by d(2Λ′)t+1N δ. Thus
if t > 0 there is a natural number x,

(4.15) x ≤ d(2Λ′)t+1N δ � d(Π′)t+1∆t+1N δ,

such that
2x2cs2 + 2xs1 ∈ 2Λ′ + K0.

This implies

(4.16) x2cs2 + xs1 ∈ Λ +
1

2
K0.

If t = 0, we take x = 1. Of course (4.16) holds, since s1 = s2 = 0.
Now let n = xcq. We shall show that

n � N1−δ,(4.17)

xici−1|bi| � N−δ (i = 1, 2).(4.18)

Suppose for a moment that (4.17), (4.18) hold. We see that the natural
number n ≤ N satisfies

n2a2 + na1 = x2c(`2 + s2 + b2) + x(`1 + s1 + b1)

= (x2cs2 + xs1) + (x2cb2 + xb1) + `,

where ` ∈ Λ. Taking (4.16)–(4.18) into account,

n2a2 + na1 ∈ Λ + K0.

This contradicts our hypothesis. Hence there must be a solution of (4.11)
after all, and the proof is complete.

It remains to prove (4.17), (4.18). Consider Case (ii) first. Here t = h−1,

n = xcq � d(Π′)h∆hqN δ

� |p|h∆h|p|−2N δ � ∆hN δ � N1−δ

from (4.15), (4.12), (3.2), (3.1). Further

xici−1|bi| � d(Π′)hi∆hi|p|−1qi−1‖qpai‖
� |p|hi−1∆hi|p|−2i+1N δ−i

� (∆hN−1+δ)i � N−δ,

24



again from (4.15), (4.12), (3.2), (3.1).
Now consider Case (iii). Here t = h− 2,

n = xcq � d(Π′)h−1∆h−1|p1| |p2|d(Π′)−1a−2B−2N2+δ

� (|p1| |p2|)h−1∆h−1a−2B−2N2+δ

from (4.15), (4.13), (3.4), and since

(4.19) d(Π′) ≤ |p1| |p2|.

Recalling (3.3),

n � (a2N−1B)h−1∆h−1a−2B−2N2+δ

� a2h−4Bh−3N−h+3+δ∆h−1

� ∆h−1N δ � N1−δ

since a < N δ, B < N . Similarly,

xici−1|bi| � d(Π′)(h−1)i∆(h−1)iN δ(|p1| |p2|)i−1d(Π′)−i|p1|qi−1‖qp2ai‖

(from (4.15), (4.13))

� (|p1| |p2|)(h−1)i−1∆(h−1)i(a−2B−2N2)i−1B−1N1−i+δ

(from (4.19), (3.4), (3.5))

� ∆(h−1)i(a2N−1B)(h−1)i−1(a−2B−2N2)i−1a−1B−1N1−i+δ

� (∆h−1a2h−5Bh−3N−h+2+δ)i � (∆h−1N−1+δ)i

� N−δ

from (3.3), (3.1).
Finally, consider Case (iv). Here t = h − 3. Suppose first that t > 0.

Then

n = xcq � d(Π′)h−2∆h−2|p1| |p2| |p3|d(Π′)−1N δ∆2

� ∆hN δ � N1−δ

from (4.15), (4.14), (3.6) and the bounds

(4.20) d(Π′) ≤ |p1| |p2| |p3| < N δ.
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Similarly,

xici−1|bi| � d(Π′)(h−2)i∆(h−2)iN δ(|p1| |p2| |p3|)i−1d(Π′)−i|p1| |p2|qi−1‖qp3ai‖

(from (4.15), (4.14))

� ∆(h−2)i+2(i−1)+2N δ−i

(from (4.20), (3.6))

� (∆hN−1+δ)i � N−δ.

We argue a little differently in Case (iv) if h = 3, t = 0. We have Π′ = Π,

n = cq � |p1| |p2| |p3|d(Π′)−1∆2N δ

� ∆3N δ � N1−δ

from (4.14), (3.6), (4.20). Similarly,

ci−1|bi| � (|p1| |p2| |p3|)i−1d(Π′)−i|p1| |p2|qi−1‖qp3ai‖
� ∆i+2(i−1)+2N−i+δ � N−δ

from (4.14), (3.6), (4.20). We have now obtained (4.17), (4.18) in all cases,
and the proof of Theorem 1 is complete.
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