INTEGERS AND LIMITS REVIEW PROBLEMS

MATH 290

- (1) Let $a, b, r, q \in \mathbb{Z}$, with a = bq + r. Prove that gcd(a, b) = gcd(b, r).
- (2) Let $a, b \in \mathbb{N}$. Prove that if gcd(a, b) > 1, then either b|a or b is not prime.
- (3) Let $a, b \in \mathbb{Z}$, which are not both zero. Prove that if c is a common divisor of a and b, then c|gcd(a, b).
- (4) For each of the following pairs of integers a, b, use the Euclidean algorithm to find gcd(a, b), and the extended Euclidean algorithm to find $s, t \in \mathbb{Z}$ such that gcd(a, b) = sa + tb:
 - (a) a = 374, b = 946
 - (b) a = 1125, b = 2744
 - (c) a = 484, b = 1155
- (5) Let $a, b, c \in \mathbb{Z}$, with $a \neq 0$. If $a \mid bc$, and gcd(a, b) = 1, then $a \mid c$.
- (6) Let $a, b \in \mathbb{Z}$, which are not both zero. Show that there exist an infinite number of integers $s, t \in \mathbb{Z}$ such that gcd(a, b) = sa + tb. (You may use the theorem that tells you that there is at least one such pair of integers.)
- (7) Let $a, b, c, m, n \in \mathbb{Z}$ with $m, n \geq 2$. Prove that if $a \equiv b \pmod{m}$ and $a \equiv c \pmod{n}$, then $b \equiv c \pmod{gcd(m, n)}$.
- (8) Let $a \in \mathbb{Z}$ be odd. Prove that gcd(a, a+2) = 1.
- (9) Prove that the sequence $\{e^n + 1\}$ diverges to infinity.
- (10) Prove that the sequence $\left\{\frac{n+1}{3n-1}\right\}$ converges to $\frac{1}{3}$.
- (11) Prove that the sequence $\{1 + (-2)^n\}$ diverges.
- (12) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \overline{\mathbb{Q}} \end{cases}$$

Prove that $\lim_{x\to 0} f(x) = 0$. Does $\lim_{x\to a} f(x)$ exist for any other $a \neq 0$?

- (13) Prove that $\lim_{x\to 2} \frac{3}{2}x + 1 = 4$.
- (14) Prove that $\lim_{x \to 1} \frac{1}{5x-4} = 1$.