Math 341 Lecture #6
§1.6: Cantor’s Theorem

We give a less direct proof that R is uncountable by showing that its subset (0,1) is
uncountable.

Before we do so, we recall some facts about decimal expansions of real numbers.

Every irrational number has a nonrepeating decimal expansion that is unique:
V2=1414....

Every rational number has a repeating decimal expansion:
L 0.2000
=0 e
Some rational numbers have two repeating decimal expansions:
1
- =0.1999....
bt

How do we know that this second decimal expansion equals 1/57

Well, we make use of the convergent geometric series
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where a # 0 and |r| < 1.

Since
0.1999...=0.1+0.0999. ..
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Fact: a rational number a/b in lowest terms has two decimal expansions if and only if
the only primes that divide b are 2 or 5.

If a rational number has two decimal expansions, as does 1/5, the one expansion will
repeat 0 from some point, while the other expansion will repeat 9 from some point.

Theorem 1.6.1. The open interval (0,1) in R is uncountable.

Proof. We argue by contradiction: suppose there is a bijection f : N — (0, 1).
This means that each x € (0,1) is the image x = f(n) of a unique n € N.
Each a, = f(n) € (0,1) has a decimal expansion

Ay = 0.an1an2an3 ce

were a,; belongs to set of digits {0,1,2,...,8,9}.
If a,, is irrational then its decimal expansion is unique.

If a,, is rational, its decimal expansion may be unique; if it is not unique then WLOG we
assume that the digit 0 repeats from some point on.

We list the images of f starting with f(1), then f(2), etc.:

a; — f(l) = O.a11a12a13 ceey
ay = f(2) = 0.az1a92a03 . . .,

as = f<3> = O.CL316L326L33 cey

Is every real number between (0, 1) really in this list?
We define the number b = 0.b1b3b5 ... by

b, — 4 if Qi = 5,
[This differs from the book which uses 2 and 3 instead of 4 and 5.]

By this choice of digits, the decimal expansion for b never has repeating 9’s in it, and so
b is not an alternative expansion of rational number.

By the choice of b; we have that a; # b; by the choice of by, we have as # b; by the choice
of b3 we have az # b, and on it goes, so that a; # b for all i € N.

Thus b ¢ f(N), and hence f is not surjective. O

Recall that the power set of a set A is the collection of all subsets of A, and is denoted
by P(A).

Theorem 1.6.2 (Ca,ntor). For any set A, there does not exist a surjection f : A —
P(A).

Proof. Suppose there is a surjection f: A — P(A).



Thus for each a € A we get an element f(a) of P(A), i.e., f(a) is a subset of A.

We will achieve a contradiction by exhibiting a subset B of A such that B # f(a) for all
ac A

For each a € A the subset f(a) of A has either a € f(a) or a & f(a).

Consider the set
B={acA:a¢ f(a)}.

Since by assumption the function f is a surjection, there is a’ € A such that B = f(d’).

When we consider the element o’ and the set B, we have two possibilities: o’ € B or
a & B.

If o’ € B, then o’ ¢ f(a') = B, a contradiction.

If a’ & B, then o« € f(a') = B, a contradiction.

In both cases we have a contradiction, and so there is no surjection from A to P(A). O
Corollary. The sets A" and P(N) do not have the same cardinality.

That raises a question: what other sets has the same cardinality as that of P(N)?

The answer is (0, 1), R, etc.



