
Math 341 Lecture #11
§2.6: The Cauchy Criterion

There is way to describe a convergence sequence without an explicit reference to its limit.

This involves comparing the terms of a sequence with themselves!

Definition 2.6.1. A real sequence (an) is called Cauchy if, for every ε > 0 there exists
N ∈ N such that whenever m,n ≥ N we have

|an − am| < ε.

This definition asserts for a sequence that after a certain point (the value of N) the terms
in the sequence are all closer to each other than the given value of ε.

We will see how this notion of a Cauchy sequence ties in with a convergent sequence.

Theorem 2.6.2. Every convergent sequence is a Cauchy sequence.

Proof. Suppose (xn) is a convergent sequence with limit x.

For ε > 0 there is N ∈ N such that |xn − x| < ε/2.

We introduce xm by |xn − xm| and use the triangle inequality:

|xn − xm| = |xn − x+ x− xm| ≤ |xn − x|+ |xm − x| <
ε

2
+
ε

2
= ε

whenever m,n ≥ N .

Thus the convergent (xn) is Cauchy. �

To get the converse – every Cauchy sequence is convergent – takes more work because
we have to guess what the limit should be.

Lemma 2.6.3. Cauchy sequences are bounded.

Proof. Suppose (xn) is Cauchy.

For ε = 1 there is N ∈ N such that |xn − xm| < 1 for all m,n ≥ N .

Pick m = N , so that |xn − xN | < 1 for all n ≥ N .

Using the inequality | |a| − |b| | ≤ |a − b| (see Exercise 1.2.6(d)), we obtain for n ≥ N
that ∣∣ |xn| − |xN | ∣∣ ≤ |xn − xN | < 1.

This implies that |xn| < |xN |+ 1 for all n ≥ N .

That leaves finitely many terms of the sequence at the beginning, and so

M = max{|x1|, . . . , |xN−1|, |xN |+ 1}

is a bound for (xn). �

Theorem 2.6.4 (Cauchy Criterion). A real sequence converges if and only if it is a
Cauchy sequence.

Proof. We established that a convergent sequence is Cauchy in Theorem 2.6.2.



So it remains to show that a Cauchy sequence is convergent.

The key to showing this is to find a guess for what the limit is, and we will use the
Bolzano-Weierstrass Theorem to do this.

Suppose that (xn) is Cauchy.

Lemma 2.6.3 guarantees that (xn) is bounded, and so by the Bolzano-Weierstrass Theo-
rem, the Cauchy sequence (xn) has a convergent subsequence (xnk

).

Let x be the limit of this convergence subsequence.

The idea now is to show that the original Cauchy sequence (xn) converges to x as well.

Here is where we will use (again) that (xn) is Cauchy.

For ε > 0 there is N ∈ N such that |xn − xm| < ε/2 for all m,n ≥ N .

Because (xnk
) converges to x, there is a term in this subsequence, call it xnK

where
nK ≥ N , such that

|xnK
− x| < ε

2
.

By this choice of nK ≥ N we obtain

|xn − x| = |xn − xnK
+ xnK

− x|
≤ |xn − xnK

|+ |xnK
− x|

<
ε

2
+
ε

2
= ε.

for all n ≥ N .

Therefore, the Cauchy sequence (xn) is convergent. �

Completeness Revisited. Let’s review the logical consequences of the Axiom of
Completeness (AoC), that any nonempty bounded above set of real numbers has a least
upper bound.

In the proof of the Nested Interval Property (NIP) and the Monotone Convergence The-
orem (MCT), we used the Axiom of Completeness.

In the proof of the Bolzano-Weierstrass Theorem (BWT), we used the Nested Interval
Property.

And finally, in the proof of the Cauchy Criterion (CC), we used the Bolzano-Weierstrass
Theorem.

Are these many theorems logically equivalent?

The NIP implies AoC if we assume that (1/2)n → 0 (something equivalent to the
Archimedean Property) holds.

It is true that, with the assumption of the Archimedean Property, any one of these five
– AoC, NIP, MCT, BWT, CC – logically imply the rest.

We know that through Dedekind cuts of rational numbers, that the AoC is not just an
axiom but a theorem, and that the Archimedean Property is a consequence of the AoC.



Each one of five – AoC, NIP, MCT, BWT, CC – expresses the idea that there are no
“holes” or “gaps” in the real numbers, with each one asserting the completeness of R in
its own way.

With all of these logically equivalent statements about the completeness of R, how then
do we define the set of real numbers?

For a mind expanding experience, try this: say two rational Cauchy sequences (xn)
and (yn) are equivalent if xn − yn → 0; this is an equivalence relation on the set of
rational Cauchy sequences; define a real number as an equivalent class of rational Cauchy
sequences.

So when we add two real numbers we are really adding two equivalence classes of rational
Cauchy sequences!


