Math 341 Lecture #15
§3.2: Open and Closed Sets, Part II

Closed Sets. We develop the concepts needed to define what a closed subset of R is.

Definition 3.2.4. A point z € R is a limit point of a nonempty A C R if every € > 0
we have (ANV.(x)) —{z} # 0, i.e, V.(z) intersects A in some point other than z.

Examples. The endpoint z = 1 of the A = (0,1] is a limit point because every V(1)
contains points of (0, 1] other than 1.

The point x = 1/3 is a limit point of A = (0, 1] because every V,(1/3) contains points of
A other than 1/3.

The endpoint 0 of A = (0,1] is not in A but is a limit point because (ANV,(0))—{0} # 0
for every € > 0.

However the point —1/4 is not a limit point of A = (0, 1] because not every V,(—1/4)
contains points of A.

Theorem 3.2.5. A point x is a limit point of a nonempty subset A of R if and only if
x = lim a,, for some sequence (a,) contained in A with a, # x for all n € N.

Proof. Suppose that x is a limit point of A.

For n € N, take ¢ = 1/n.

With x being a limit point of A, there is a point a, € A that is in V. (z) with a, # .
To see that (a,) converges to z, for € > 0, we pick N € N such that 1/N < e.

Then for all n > N, we have a,, € Vy/,(x) C Vin(z) C Vi(2), ie., |a, — x| < 1/N <.
Now suppose there is a sequence (a,) in A with a,, # x for all n, such that lima, = x.
Then for € > 0 there is N € N such that for all n > N there holds a,, € V(z).

In particular, we have for every ¢ > 0 there existence of ay € A such that ay € (AN
Ve(z)) —{z}.

This says that x is a limit point of A. O
Note that this idea of a limit point x excludes the use of a constant sequence a,, = x.
Definition 3.2.6. A point a € A is an isolated point of A if it is not a limit point of A.
Example. Each element of a nonempty finite subset A of R is an isolated point of A.
However, a nonempty finite subset A of R does not have any limit points. Why?

Keep in mind that an isolated point of A is an element of A whereas a limit point of A
need not be an element of A.

Definition 3.2.7. A set F C R is closed if F contains all of its limit points.

Theorem 3.2.8. A set F' C R is closed if and only if every Cauchy sequence contained
in F' has its limit in F also.

This a homework problem 3.2.5.



Example 3.2.9. (i) Does the set

have isolated points? Is it closed?

Each point of A is isolated because for e = 1/n—1/(n+1) we have V.(1/n)NA = {1/n},
and so 1/n is not a limit point of A.

The number 0 is a limit point of A because 1/n — 0 where 1/n # 0 for all n € N,
The set A is not closed because it does not contain its limit point 0.

However, the set F' = AU {0} is closed.

(ii) The closed interval [c, d] for —oo < ¢ < d < o0 is a closed set.

For a limit point x of [¢, d], there is by Theorem 3.2.5 a sequence (z,,) in [c, d] with z,, # x
and (z,) — .

The sequence satisfies ¢ < x,, < d for all n € N, so by the Order Limit Theorem we have
c<xz<d,ie., x € [cd], and so [c,d] is closed.

(iii) The set of limit points of Q is all of R.

Recall Theorem 1.4.3 (Density of Q in R) which stated that for every two real numbers
a < b there exists a rational number r satisfying a < r < b.

Thus for a real number y and ¢ = 1/n there exists a rational number r, satisfying
y—1/n<mr, <y+1/n.

If y is irrational then 7, # y, and if y is rational we choose a rational r, satisfying
y—1/n<r,<y<y+1/n.

In either case, we have a rational sequence (r,) with r, # y such that r, — y.
Hence by Theorem 3.2.5, the real y is a limit point of Q.
We state this version of the density theorem as its own theorem.

Theorem 3.2.10 (Density of @Q in R). For every y € R there exists a sequence of
rational numbers converging to y.

Closure. We describe an important topological procedure called closure.

Definition 3.2.11. For a set A C R and let L be the set of limit points of A. The
closure of A is defined to be A = AU L.
We saw in (i) in the previous Example that A = A U {0}.

For (ii) we have [c,d] = [c, d].

Theorem 3.2.12. For any A C R, the closure A is a closed set and is the smallest
closed set containing A.

Proof. For a set A, let L be the set of the limit points of A.
Then A = AU L certainly contains all of the limit points of A.



Is the set A closed, i.e., does it contains all of its limit points?
You have it as a homework problem 3.2.7 to supply a proof that A is indeed closed.
Now let C' be a closed set containing A.

If x is a limit point of A, then there is a sequence (a,) in A with a,, # z for all n, and
a, — T.

Since A C C, we have a,, € C for all n.
Thus z is a limit point of C', and since C' is closed, we have x € C.
This says that A C C. U

Complements. If a subset is not open, it is closed? If it is not closed, it is open?
The answer to both of these is no, as the half-open, half-closed interval (0, 1] provides a
counterexample to both.

However, open and closed are the opposite of each other under complements.

Recall that the complement of a subset A of R is the set

A={zeR:x ¢ A}

Theorem 3.2.13. A set O C R is open if and only if O¢ is closed, and a set F' C R is
closed if and only if F° is open.

Proof. Let O be open and let x be a limit point of O°.
Then every V,(z) contains a point of O¢ other than .

If 2 € O then as O is open, there is € > 0 such that V. (z) C O, contradicting that V,(z)
contains a point of O¢ other than x.

Thus x € O¢, and O° is closed.
Now assume that O¢ is closed, and let = € O.
Then x is not a limit point of O°, because O° contains all of its limit points and = & O°.

With x not a limit point of O°¢ there is € > 0 such that V.(x) N O° = @, which implies
that V.(z) C O; thus O is open.

The second part of the theorem follows from the observation that (E)¢ = E: let O = F°
and O°¢ = (F°)¢ = F and apply the above argument. O

We use Theorems 3.2.3 and 3.2.13 in conjunction with De Morgan’s Laws,

(U E) N (m E> e
AEA AEA AEA AEA

to prove the following.

Theorem 3.2.14. (i) The union of a finite collection of closed sets is closed. (i) The
intersection of an arbitrary collection of closed sets is closed.

The middle-thirds Cantor set is closed because it is the intersection of closed sets.



