
Math 341 Lecture #17
§3.4 Perfect Sets and Connected Sets.

The Cantor set C has another topological property that will prove useful in showing that
C is uncountable.

Definition 3.4.1. A set P ⊂ R is perfect if it is closed and contains no isolated points.

A finite subset of R is closed but it is not perfect.

Closed intervals [c, d] with −∞ < c < d <∞, are perfect.

What about the Cantor set?

Theorem 3.4.2. The Cantor set C is perfect.

Proof. Each Cn is a finite union of closed intervals, and so is closed.

Then C = ∩Cn is a closed set.

Now we will show that each x ∈ C is not isolated by constructing a sequence (xn) in C
with xn 6= x for all n ∈ N and xn → x.

The closed set C1 is the union of two closed intervals I11 and I12 each of length 1/3.

The point x is in one of these two closed intervals, call it I1.

The intersection C2 ∩ I1 consists of two closed intervals, one of which contains x.

Pick x1 to be an endpoint of the other closed interval, and so x1 6= x.

Because the endpoints of the closed intervals that make C2 are in C, we have that x1 ∈ C.

Because x and x1 are both in I1 and the length of I1 is 1/3, we have |x1 − x| ≤ 1/3.

The closed set C2 is the union of four closed intervals I2j, j = 1, 2, 3, 4, each of length
1/9.

The point x is in one of these four closed intervals, call it I2.

The intersection C3 ∩ I2 consists of two closed intervals, one of which contains x.

Pick x2 to be an endpoint of the other closed interval, and so x2 6= x.

Because x2 is an endpoint of one of the closed intervals in C3, we have that x2 ∈ C.

Because x2 and x both belong to I2 which is of length 1/9, we have |x2 − x| ≤ 1/9.

Continuing in this way, we construct a sequence (xn) in C with xn 6= x for all n ∈ N,
and |xn − x| ≤ 1/3n.

Thus we have shown that x is a limit point of C, and therefore x is not isolated.

As x was an arbitrary point of C, we have that C is perfect. �

In this proof we used the endpoints of the closed intervals in Cn to form a sequence (xn)
that converged to the given point x in the Cantor set.

Each endpoint is rational of the form m/3n for 0 ≤ m ≤ 3n, but this does not mean that
the limit x of (xn) is rational.

In fact “most” of the sequences formed from the rational endpoints converge to irrational
numbers, and this account for the uncountable nature of the Cantor set.



Theorem 3.4.3. A nonempty perfect set is uncountable.

Proof. A nonempty perfect set P cannot be finite, because in a nonempty finite set each
point is isolated.

So a nonempty perfect set is infinite.

Suppose, to the contrary, that P is countable.

Using a bijection f : N→ P we can enumerate the elements of P as

P = {x1, x2, x3, . . . }.

The point here is that every element of P appears in this enumerated list.

Let I1 be a closed interval that contains x1 in its interior (i.e., x1 is not an endpoint of
I1).

As P is perfect, the element x1 is not isolated, so there is some other y2 ∈ P such that
y2 is also in the interior of I1.

Choose a closed interval I2 centered on y2 so that I2 ⊆ I1 and x1 6∈ I2.

Since y2 ∈ I2 and y2 ∈ P we have I2 ∩ P 6= ∅.
The element y2 ∈ P is not isolated, so there is a y3 ∈ P that is in the interior of I2.

We may choose y3 6= x2, for if y3 = x2 then there will be another choice of y3 ∈ P in the
interior of I2 because y3 is not isolated.

Now choose a closed interval I3 ⊆ I2 centered on y3 for which x2 6∈ I3.

Since y3 ∈ I3 and y3 ∈ P we have I3 ∩ P 6= ∅.
Carrying out this construction inductively results in a sequence of closed intervals In
satisfying

(i) In+1 ⊆ In,

(ii) xn 6∈ In+1, and

(iii) In ∩ P 6= ∅.

For each n ∈ N, the set Kn = In∩P is compact because In is bounded and In∩P closed.

By Theorem 3.3.5 we have that
∞⋂
n=1

Kn 6= ∅.

On the other hand, since Kn ⊆ P and xn 6∈ In+1 for all n ∈ N, we have that

∞⋂
n=1

Kn = ∅.

This contradiction implies that P is uncountable. �



Now we turn out attention to another topological notion for subsets of R.

Definition 3.4.4. Two nonempty sets A,B ⊆ R are separated if A ∩ B = ∅ and
A ∩B = ∅.
A set E ⊆ R is disconnected if it can be written as E = A ∪ B for separated sets A and
B.

A set that is not disconnected is called a connected set.

Example 3.4.5. (i) The set A = (1, 2) and B = (2, 5) are separated because

A ∩B = [1, 2] ∩ (2, 5) = ∅, A ∩B = (1, 2) ∩ [2, 5] = ∅.

The set E = A ∪ B is disconnected because it is the union of the separated sets A and
B.

On the other hand, the sets C = (1, 2] and D = (2, 5) are not separated because C∩D =
{2}.
The set C∪D is the interval (1, 5) which is connected (although we have not shown this).

(ii) The set of rational numbers is disconnected.

To see this we set
A = Q ∩ (−∞,

√
2), B = Q ∩ (

√
2,∞).

We certainly have Q = A ∪B.

The Order Limit Theorem implies that any limit point of A will be in (−∞,
√

2], which
is disjoint from B.

Similarly, A ∩B 6= ∅, and so A and B are separated sets.

We conclude that Q is disconnected.

By carefully working through the logical negations of the quantifiers in the definition of
disconnected, we arrive at a positive characterization of connectedness.

Theorem 3.4.6. A set E ⊂ R is connected if and only if, for all nonempty disjoint sets
A and B satisfying E = A ∪ B, there always exists a convergent sequence (xn) with all
xn contained in one of A or B, and x = limxn contained in the other.

This notion of connectedness is more relevant in higher dimensions, for in dimension 1,
a subset E ⊆ R is connected precisely when E is an interval.

Theorem 3.4.7. A set E ⊆ R is connected if and only if whenever a < c < b with
a, b ∈ E, it follows for that c ∈ E too.

Proof. Suppose that E is connected, let a, b ∈ E, and pick a < c < b.

Suppose c 6∈ E, and set

A = (−∞, c) ∩ E, B = (c,∞) ∩ E.

Because a ∈ A and b ∈ B, both A and B are nonempty; and E = A ∪B.



Since any limit point of l of A satisfies l ≤ c by the Order Limit Theorem, we have that
A ∩B = ∅.
Similarly, we have A ∩B = ∅.
Thus A and B are separated set, and so E = A ∪B is disconnected, a contradiction.

Hence, c ∈ E.

Now suppose whenever a < c < b with a, b ∈ E we have that c ∈ E too.

We will use Theorem 3.4.6 to show that E is connected.

To this end we write E = A ∪B for nonempty disjoint sets A and B.

Pick a0 ∈ A and b0 ∈ B, and WLOG suppose that a0 < b0.

Since every c ∈ (a0, b0) must be in E, we have that I0 = [a0, b0] ⊆ E.

Bisect I0 into two equal halves.

The midpoint of I0 is either in A or B.

If the midpoint of I0 is in A, take I1 = [a1, b1] to be the right half where a1 is the midpoint
of I0 and b1 = b0 ∈ B.

If the midpoint of I0 is in B, take I1 = [a1, b1] to be the left half where b1 is the midpoint
of I0 and a1 = a0 ∈ A.

Continuing this process yields a sequence of nested intervals In = [an, bn] where an ∈ A
and bn ∈ B, and whose lengths bn − an go to 0 as n→∞.

By the Nested Interval Property, there exists

x ∈
∞⋂
n=0

In.

The sequence (an) of left endpoints belongs to A and converges to x, and the sequence
(bn) of right endpoints belongs to B and converges to x as well.

[Note: (an) and (bn) are equivalent Cauchy sequences.]

Since x ∈ I0 and I0 ⊆ E, we have that x ∈ E = A ∪ B, which means that x ∈ A or
x ∈ B.

So there is a limit point of one of A or B that belongs to the other, and by Theorem
3.4.6, the set E is connected. �


