
Math 341 Lecture #18
§3.5: Baire’s Theorem

The middle thirds Cantor set shows us that closed subsets of R can be deceptively elusive,
in contrast to open sets which are unions of open intervals.

This is particularly poignant when we try to assess the “size” of the Cantor set.

We showed that the “length” of the Cantor set is 0 which means that C does not contain
any open intervals. (Why?)

We also showed that the Cantor set is perfect and so uncountable (in fact there is a
bijection between the Cantor set and the closed interval [0, 1]).

In addition to length and cardinality as “sizes” of a set, is a third notion of “size” that
we will discuss here.

Recall that arbitrary union of open sets is open, and that an arbitrary intersection of
closed sets is closed.

The Cantor set is an example of the latter.

Definition 3.5.1. A set A ⊆ R is called and Fσ set if it can be written as the countable
union of closed sets.

Note that a countable union of closed sets is not necessarily closed.

A set B ⊆ R is called a Gδ set if it can be written as the countable intersection of open
sets.

Note that a countable intersection of open sets is not necessarily open.

You will show as a homework problem 3.5.1 that the complement of a Gδ set is an Fσ
set, and vice versa.

Example. The set of rational numbers Q is an Fσ set.

We need to find a countable collection of closed subsets of Q whose union is Q.

Since Q is countable, there is a bijection f : N→ Q.

For each n ∈ N, set Fn = {f(n)}, a closed set with one element.

Then

Q =
∞⋃
n=1

Fn,

and hence Q is an Fσ set.

Passing to the complements, we have that the set I of irrational numbers is a Gδ set,

I =
∞⋂
n=1

F c
n,

where each F c
n = F

c

n = (−∞, f(n)) ∪ (f(n),∞) is open and dense.

Recall that a set G ⊆ R is dense in R if given any two real numbers a < b there exists
c ∈ G such that a < c < b.



Another way to think about dense sets is that a G ⊆ R is dense if and only if G = R.

We can do this because we can find sequences in G that converge to any real number
precisely when G is dense in R.

Theorem 3.5.2. If G1, G2, G3, . . . is a countable collection of dense, open sets in R,
then

∞⋂
n=1

Gn

is a dense subset of R.

Note: This is a slightly different conclusion than that in the text, but this implies the
conclusion that ∩Gn 6= ∅. The proof below is also different than the one outlined in the
text.

Proof. To show the denseness of ∩Gn in R we will show for any open interval O ⊆ R
that there exists a point of ∩Gn contained in O.

Since G1 is open and dense in R, the intersection G1 ∩O is a nonempty open set and we
can find x1 ∈ G1 and 0 < r1 < 1 such that

Vr1(x1) ⊆ G1 ∩O.

Since G2 is open and dense in R, the intersection G2 ∩ Vr1(x1) is a nonempty open set
and we can find x2 ∈ G2 and 0 < r2 < 1/2 such that

Vr2(x2) ⊆ G2 ∩ Vr1(x1).

Continuing this process yields sequences of elements xn ∈ Gn and radii 0 < rn < 1/n
such that

Vrn+1(xn+1) ⊆ Gn+1 ∩ Vrn(xn) for all n ∈ N.

For any ε > 0 pick N ∈ N so that 2/N < ε.

For m,n ≥ N , we have that xm and xn both belong to VrN (xN) so that

|xn − xm| < 2rN <
2

N
< ε.

Thus (xn) is Cauchy, and so (xn) converges to some x ∈ R.

Since each xi lies in the closed set Vrn+1(xn+1) when i > n, it follows that x ∈ Vrn+1(xn+1).

Since Vrn+1(xn+1) ⊆ Gn+1 ∩ Vrn(xn) for all n ∈ N, it follows that x ∈ Gn+1 for all n ∈ N.

Since Vr1(x1) ⊂ G1 ∩O, we have that x ∈ G1, so that x is a point of ∩Gn.

Also since Vr1(x1) ⊆ G1 ∩O we have that x ∈ O. �

Opposite to a dense set is another kind of subset of R.

Definition 3.5.3. A set E ⊆ R is nowhere dense if E does not contain nonempty open
intervals.



Example. The set Q is dense in R because every real number is a limit point of Q.

But the set Z is nowhere dense in R because Z = Z does not contain nonempty open
intervals.

The Cantor set can be shown to be nowhere dense (3.5.9); you have a homework problem
to show that a set E is nowhere dense in R if and only if E

c
is dense in R (3.5.8).

Baire’s Theorem 3.5.4. The set R cannot be written as a countable union of nowhere
dense sets.

Proof. Suppose to the contrary that there are countable many nowhere dense sets
E1, E2, E3, . . . such that

R =
∞⋃
n=1

En.

Since En ⊆ En for all n, we have

∞⋃
n=1

En ⊆
∞⋃
n=1

En.

But the latter union is a subset of R, so that

R =
∞⋃
n=1

En.

Since each En is nowhere dense, each En
c

is an open dense subset of R.

By De Morgan’s Law we have

∅ = Rc =

(
∞⋃
n=1

En

)c

=
∞⋂
n=1

En
c
.

But each En
c

is open and dense, so that by Theorem 3.5.2, we have

∞⋂
n=1

En
c 6= ∅.

This contradiction shows that R cannot be written as a countable union of nowhere dense
sets. �

The third notion of “size” is that a subset of R is “thin” or meager if it is the countable
union of nowhere dense sets.

Subsets of R that are not meager are considered “fat.”

Baire’s Theorem says that R is a “fat” set.

Can Q be written as a countable union of nowhere dense sets?

Yes, we showed this when we wrote Q as an Fσ set.

We also showed that I is a Gδ set, in particular the intersection of open dense subsets,
and so I is dense by Theorem 3.5.2.

The point of Baire’s Theorem is that R = Q ∪ I is much bigger than Q.


