Math 341 Lecture #20
§4.2: Functional Limits

We will now rigorously define lim, .. f(x) for a function f : A — R with ) # A C R (and
A not assumed to be an interval).

Recall that a limit point ¢ of A is a point ¢ € R such that (AN V. (c)) — {c} # 0 for all
e> 0.

Equivalently, ¢ is a limit point of A if there is a sequence (x,) in A with x,, # ¢ for all
n € N and x, — c.

For a limit point ¢ of A, we remember that

lim f(z) =L

Tr—cC

means that as x approaches ¢, the value of f(z) approaches L.

And you might remember the € — § version of this.

Definition 4.2.1. Let f : A — R, and let ¢ be a limit point of A (so that ¢ is not
necessarily in the nonempty A). We say that

lim f(z) = L

Tr—cC

if for every € > 0 there exists 6 > 0 such that whenever 0 < |z —¢| < § with x € A it
follows that |f(z) — L| < e.

We can recast this e — 4 definition of limit in the topological setting: we say lim,_,. f(x) =
L if for every V(L) there exists Vs(c) such that for every x € (Vs(c) N A) —{c}, it follows
that f(x) € V.(L).

The appearance of € A in these equivalent definitions of a limit is to remind us that
x has to be in the domain of f; it isn’t always the case the f is defined for all points
nearby c.

Example 4.2.2. (i) For f(z) = 3z + 1 with domain A = R we will show that

lim f(z) = 7.

z—2

For each € > 0 we have to find 6 > 0 such that 0 < |z — 2| < ¢ leads to |f(z) — 7| <.
We look at what f is doing in relation to is alleged limit of 7:

[f(z) =7 =1324+1—-7 =3z —6| = 3|z —2|.
Since we want this to be smaller than € when 0 < |z — 2| < d, we pick
d=-.
Then we have that

!f(x)—7|:3ya;—2|<35:3(§>:e.



(ii) For g(z) = 2? we will show that

lim g(z) = 4.

T—2

We start with how g(x) relates with 4:
lg(@) =4 =a* —4| = |(z +2)(z - 2)| = |z + 2| |« — 2|.

The term |z — 2| we can control with §, but what do we do with |z + 2|?
This is where the flexible to choose § comes into play.

We are only interested in what happens to g(z) when z is close to 2, and so we choose
to keep 0 from getting too big.

When § < 1, the inequality |x — 2| < ¢ implies that |z 4 2| < 5.
To get an € into this we choose § = min{1, ¢/5} which forces § to never be bigger than 1.
Then for 0 < |z — 2| < § we have that

22 — 4] = |z + 2| |x—2|<5(§>:6.

We can recast the definition of a functional limit in terms of sequences.

Theorem 4.2.3 (Sequential Criterion for Functional Limits). For a function
f A — R and a limit point ¢ of A, the following are equivalent.

(i) lim f(z) = L.

Tr—C

(ii) For all sequences (z,) in A satisfying z,, # ¢ for all n € N and z,, — ¢, we have
that f(z,) — L.

Proof. Suppose that lim,_,. f(z) = L.

For € > 0 there is § > 0 such that f(z) € V.(L) whenever z € (Vs(c) N A) — {c}.
Consider an arbitrary sequence (z,) in A with z,, # ¢ for all n € N and z,, — c.
Because z,, — ¢, there is N € N such that z,, € (Vs(c) N A) — {c} for all n > N.
Having z,, € (Vs(¢) N A) — {c} for all n > N implies that f(z,) € V(L) for all n > N.
This says precisely that f(z,) — L.

We will argue the other direction by contradiction.

We assume that for all sequences (z,) in A with z,, # ¢ for all n € N and z,, — ¢ we
have f(x,) — L, but that lim,_,. f(z) # L.

The latter means that there exists ¢g > 0 such that for all 6 > 0 there exists = €
(Vs(c) N A) — {c} such that f(z) & Vi, (L).

We use this to construct a sequence that will give a contradiction.



For each n € N we set 0, = 1/n and choose x,, € (Vj, (¢) N A) — {c} for which f(z,) &
Veo (L)
The sequence (z,) converges to ¢, but f(z,) /4 L, a contradiction. O
Now we can apply the theory of sequences to derive familiar results about functional
limits.

Corollary 4.2.4 (The Algebraic Limit Theorem for Functional Limits). Let
f and g be real-valued functions defined on A C R, and assume that lim,_,. f(x) = L
and lim, . g(x) = M for some limit point ¢ of A. Then

(i) imkf(x) = kL for all k € R,

Tr—cC

(ii) lim [f(z) + g(z)] = L+ M,

Tr—C

(iii) lim [f(z)g(z)] = LM, and

Tr—C

L
(iv) 9161_% % = provided M # 0.
The proof of these is a simple consequence of the Algebraic Limit Theorem for sequences.

Corollary 4.2.5 (Divergence Criterion for Functional Limits). Let f: A — R
for A C R and let ¢ be a limit point of A. If there exist two sequences (z,) and (y,) in
A with z, # ¢, y, # ¢ for all n € N, and z,, — ¢ and y,, — ¢, and

Jim f(z) # lim f(5,)

then lim,_,. f(z) does not exist.
You should be able to see why this Corollary is true.

Example 4.2.6. Does the function f(x) = sin(1/z) defined on A = R\ {0} have a limit
as v — 07




For n € N, if
1 1

T /2
then z,, — 0 (with z, # 0) and y,, — 0 (with y, # 0), and f(z,) = sin(2n7) = 0 and
f(yn) = f@2nm +7/2) =1 for all n € N, so that f(z,) — 0 while f(y,) — 1.

By the Divergence Criterion for Functional Limits, we have that lim, .o f(x) does not
exist.
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