
Math 341 Lecture #22
§4.4: Continuous Functions on Compact Sets

The Extreme Value Theorem. The topological terms of open, closed, bounded,
compact, perfect, and connected are all used to describe subsets of R.

A function f : A→ R maps a subset A of R to a subset f(A) of R.

If f is continuous and B ⊆ A has topological property X, does f(B) have topological
property X as well?

Examples. (a) If B is open, then is f(B) open too?

The function f(x) = x2 is continuous on A = R, the set B = (−1, 1) ⊆ is open, but
f(B) = [0, 1) is not open.

So continuous functions do not in general take open sets to open sets.

(b) If B is closed, then is f(B) closed?

The function

f(x) =
1

1 + x2

is continuous on A = R, the set B = [0,∞) ⊆ A is closed, but f(B) = (0, 1] is not closed.

So continuous functions do not in general take closed sets to closed sets.

(c) If B is bounded, then is f(B) bounded too?

The function f(x) = 1/x is continuous on A = R − {0}, the set B = (0, 1) ⊆ A is
bounded, but f(B) = [1,∞) is not bounded.

So continuous functions do not in general take bounded sets to bounded sets

So what topological property does a continuous map preserve?

Theorem 4.4.1 (Preservation of Compact Sets). If f : A→ R is continuous and
K ⊆ A is compact, then f(K) is compact.

Proof. We will show that a sequence (yn) in f(K) has a convergent subsequence whose
limit is in f(K), and therefore f(K) is compact (by Definition 3.3.1).

With yn ∈ f(K) there is (at least one) xn ∈ K such that yn = f(xn).

This gives a sequence (xn) in K.

The compactness of K implies that (xn) has a convergent subsequence (xnk
), whose limit

x ∈ K.

Since (xnk
)→ x and f is continuous, we have that ynk

= f(xnk
)→ f(x).

Since x ∈ K, we know that f(x) ∈ f(K), so that (yn) has a convergent subsequence
(ynk

) whose limit f(x) is in K; hence f(K) is compact. �

Recall the a continuous function defined on a closed interval of finite length, always
attains a maximal value and a minimum value.

Have any of you seen a proof of this Math 112 result?

Well, we can now give a proof of this.



Theorem 4.4.2 (The Extreme Value Theorem). If f : K → R is continuous on
a compact set K ⊆ R, then there exists x0, x1 ∈ K such that f(x0) ≤ f(x) ≤ f(x1) for
all x ∈ K.

Proof. Under the assumptions, we have that f(K) is compact by Theorem 4.4.1.

Since f(K) is bounded, the quantity α = sup f(K) exists by the Axiom of Completeness.

For each n ∈ N, there is then yn ∈ f(K) such that α− 1/n < yn ≤ α, and hence yn → α.

If yn < α for all n, then α is a limit point of f(K), and since f(K) is closed, we have
α ∈ f(K).

If yn = α for some n, then α ∈ f(K).

Thus, in either case, there is x1 ∈ K such that f(x) ≤ α = f(x1) for all x ∈ K.

Similarly, there is x0 ∈ f(K) such that f(x0) ≤ f(x) for all x ∈ K. �

Uniform Continuity. We turn our attention to another consequence of continuity of a
function on a compact set, for which we set the stage.

Example 4.4.3. (i) In showing that the function f(x) = 3x + 1 is continuous at an
arbitrary c ∈ R, we choose δ > 0 that corresponds to ε > 0 by considering

|f(x)− f(c)| = |3x+ 1− 3c− 1| = 3|x− c|.

Here the choice of δ = ε/3 is independent of c that gives |f(x) − f(c)| < ε whenever
|x− c| < δ.

Changing the value of c does not change the value of δ needed for continuity.

(ii) In showing that f(x) = x2 is continuous at an arbitrary c ∈ R, we choose δ that
corresponds to ε > 0 by considering

|f(x)− f(c)| = |x2 − c2| = |x+ c| |x− c|

where when |x − c| < δ ≤ 1 we have |x| − |c| ≤ |x − c| < 1, so that |x| < |c| + 1, and
hence

|x+ c| ≤ |x|+ |c| ≤ (|c|+ 1) + |c| = 2|c|+ 1.

Here the choice of δ = min{1, ε/(2|c|+ 1)} is dependent on c that gives |f(x)− f(c)| < ε
whenever |x− c| < δ.

Changing the value of c changes the value of δ needed for continuity.

Definition 4.4.4. A function f : A→ R is uniformly continuous on A if for every ε > 0
there exists δ such that |x− y| < δ for x, y ∈ A implies that |f(x)− f(y)| < ε.

This says that there is one choice of δ needed for continuity of f for every c ∈ A.

The function f(x) = 3x + 1 in Example 4.4.3 (i) is uniformly continuous on A = R
because the choice of δ needed for continuity of f at c is independent of c.

The function f(x) = x2 in Example 4.4.3 (ii) is not uniformly continuous on A = R
because the choice of δ needed for continuity of f at c depends on c: the larger |c| is, the
smaller δ has to be for continuity, and so there is not one choice of δ that will do the job.



We have a test for detecting the lack of uniform continuity.

Theorem 4.4.5 (Sequential Criterion for Nonuniform Continuity). A function
f : A → R fails to be uniformly continuous on A if and only if there exists ε0 > 0 and
two sequences (xn) and (yn) in A satisfying

|xn − yn| → 0 but |f(xn)− f(yn)| ≥ ε0.

Proof. The logical negation of the definition of uniform continuity is: there exists ε0 > 0
such that for all δ > 0 there exists x, y ∈ A satisfying |x−y| < δ for which |f(x)−f(y)| ≥
ε0.

For each δ = 1/n choose xn, yn ∈ A with |xn − yn| < 1/n and |f(xn)− f(yn)| ≥ ε0.

Then |xn − yn| → 0 while |f(xn)− f(yn)| ≥ ε0. �

Example 4.4.6. The function f(x) = sin(1/x) is continuous on the bounded open
A = (0, 1), but it is not uniformly continuous on A.

Keeping Theorem 4.4.5 in mind, for ε0 = 2 and sequences

xn =
1

2nπ + π/2
, yn =

1

2nπ + 3π/2

we have |xn − yn| → 0 while |f(xn)− f(yn)| = |1− (−1)| ≥ ε0 for all n ∈ N.

Is there a topological property on A that would guarantee that a function continuous on
A is uniformly continuous on A?

Theorem 4.4.7. A function that is continuous on a compact set K is uniformly con-
tinuous on K.

Proof. Suppose for a compact K ⊆ R, that a continuous function f : K → R is not
uniformly continuous.

By Theorem 4.4.5, there exist ε0 > 0 and sequences (xn) and (yn) in K such that
|xn − yn| → 0 while |f(xn)− f(yn)| ≥ ε0.

By the compactness of K the sequence (xn) has a convergent subsequence xnk
whose

limit x is in K.

For the subsequence (ynk
) we have by the Algebraic Limit Theorem that

lim
k→∞

ynk
= lim

k→∞

(
(ynk
− xnk

) + xnk

)
= 0 + x = x.

Thus (xnk
) and (ynk

) converge to x ∈ K.

Because f is continuous at every point of K, we have the f(xnk
) → f(x) and f(ynk

) →
f(x), which by the Algebraic Limit Theorem implies that

lim
k→∞
|f(xnk

)− f(ynk
)| = 0.

This contradicts that |f(xnk
)− f(ynk

)| ≥ ε0 > 0. �


