Math 341 Lecture #22
§4.4: Continuous Functions on Compact Sets

The Extreme Value Theorem. The topological terms of open, closed, bounded,
compact, perfect, and connected are all used to describe subsets of R.

A function f: A — R maps a subset A of R to a subset f(A) of R.

If f is continuous and B C A has topological property X, does f(B) have topological
property X as well?

Examples. (a) If B is open, then is f(B) open too?

The function f(z) = 2% is continuous on A = R, the set B = (—1,1) C is open, but
f(B) =10,1) is not open.
So continuous functions do not in general take open sets to open sets.
(b) If B is closed, then is f(B) closed?
The function )
f(z) = 1+ 22

is continuous on A = R, the set B = [0,00) C A is closed, but f(B) = (0, 1] is not closed.

So continuous functions do not in general take closed sets to closed sets.
(c) If B is bounded, then is f(B) bounded too?

The function f(x) = 1/x is continuous on A = R — {0}, the set B = (0,1) C A is
bounded, but f(B) = [1,00) is not bounded.

So continuous functions do not in general take bounded sets to bounded sets
So what topological property does a continuous map preserve?

Theorem 4.4.1 (Preservation of Compact Sets). If f : A — R is continuous and
K C A is compact, then f(K) is compact.

Proof. We will show that a sequence (y,) in f(K) has a convergent subsequence whose
limit is in f(K), and therefore f(K) is compact (by Definition 3.3.1).

With y,, € f(K) there is (at least one) z,, € K such that y, = f(x,).
This gives a sequence (z,) in K.

The compactness of K implies that (z,) has a convergent subsequence (x,, ), whose limit
r € K.

Since (z,,) — x and f is continuous, we have that y,, = f(z,,) — f(z).

Since © € K, we know that f(z) € f(K), so that (y,) has a convergent subsequence
(Yn, ) whose limit f(z) is in K; hence f(K) is compact. O

Recall the a continuous function defined on a closed interval of finite length, always
attains a maximal value and a minimum value.

Have any of you seen a proof of this Math 112 result?

Well, we can now give a proof of this.



Theorem 4.4.2 (The Extreme Value Theorem). If f: K — R is continuous on
a compact set K C R, then there exists x¢,x; € K such that f(z¢) < f(z) < f(x;) for
all z € K.

Proof. Under the assumptions, we have that f(K) is compact by Theorem 4.4.1.

Since f(K) is bounded, the quantity o = sup f(K) exists by the Axiom of Completeness.
For each n € N, there is then y,, € f(K) such that « —1/n < y, < «, and hence y,, — a.
If y, < «a for all n, then « is a limit point of f(K), and since f(K) is closed, we have
a€ f(K).

If y, = a for some n, then a € f(K).

Thus, in either case, there is 27 € K such that f(z) < a = f(x;) for all z € K.
Similarly, there is zy € f(K) such that f(z¢) < f(z) for all z € K. O

Uniform Continuity. We turn our attention to another consequence of continuity of a
function on a compact set, for which we set the stage.

Example 4.4.3. (i) In showing that the function f(x) = 3z + 1 is continuous at an
arbitrary ¢ € R, we choose 0 > 0 that corresponds to € > 0 by considering

lf(x) = f(c)] =13z +1—3c—1] = 3|z — |
Here the choice of 6 = €/3 is independent of ¢ that gives |f(x) — f(c)| < € whenever
|z —¢| < 6.
Changing the value of ¢ does not change the value of § needed for continuity.

(ii) In showing that f(x) = x? is continuous at an arbitrary ¢ € R, we choose ¢ that
corresponds to € > 0 by considering

[f(z) = fo)l = la* = | =]z + | | — ]

where when |z — ¢| < § < 1 we have |z| — || < |z —¢| < 1, so that |z| < |¢|+ 1, and
hence

|2+ ¢ <[]+ le| < (lef +1) + [e] = 2le[ + 1.
Here the choice of § = min{1,€/(2|c|+ 1)} is dependent on ¢ that gives |f(z) — f(c)| < €
whenever |z — ¢| < 4.
Changing the value of ¢ changes the value of § needed for continuity.

Definition 4.4.4. A function f : A — R is uniformly continuous on A if for every € > 0
there exists d such that |z — y| < § for x,y € A implies that |f(z) — f(y)| < e.

This says that there is one choice of § needed for continuity of f for every ¢ € A.

The function f(z) = 3z 4+ 1 in Example 4.4.3 (i) is uniformly continuous on A = R
because the choice of § needed for continuity of f at ¢ is independent of c.

The function f(z) = x? in Example 4.4.3 (ii) is not uniformly continuous on A = R
because the choice of 0 needed for continuity of f at ¢ depends on c: the larger |c| is, the
smaller ¢ has to be for continuity, and so there is not one choice of § that will do the job.



We have a test for detecting the lack of uniform continuity.

Theorem 4.4.5 (Sequential Criterion for Nonuniform Continuity). A function
f A — R fails to be uniformly continuous on A if and only if there exists ¢; > 0 and
two sequences (z,,) and (y,) in A satisfying

‘xn - ynl — 0 but ‘f($n> - f(yn)| > €.

Proof. The logical negation of the definition of uniform continuity is: there exists ¢y > 0
such that for all & > 0 there exists =,y € A satisfying |x —y| < ¢ for which | f(z)— f(y)| >

€0-
For each § = 1/n choose z,,,y, € A with |z, —y,| < 1/n and |f(x,) — f(y.)| > €o.
Then |z, — y,| — 0 while | f(z,) — f(yn)| > €o. O

Example 4.4.6. The function f(x) = sin(1/z) is continuous on the bounded open
A = (0,1), but it is not uniformly continuous on A.

Keeping Theorem 4.4.5 in mind, for ¢y = 2 and sequences

1 1

" onm + /2’ Yn =

o © 2nm + 3m/2

we have |z, — y,| — 0 while |f(z,,) — f(yn)| = |1 — (—1)| > ¢ for all n € N.

Is there a topological property on A that would guarantee that a function continuous on
A is uniformly continuous on A?

Theorem 4.4.7. A function that is continuous on a compact set K is uniformly con-
tinuous on K.

Proof. Suppose for a compact K C R, that a continuous function f : K — R is not
uniformly continuous.

By Theorem 4.4.5, there exist ¢¢ > 0 and sequences (z,) and (y,) in K such that
|z, — yn| — 0 while | f(z,) — f(yn)| > €o-

By the compactness of K the sequence (z,) has a convergent subsequence z,, whose
limit z is in K.

For the subsequence (y,,) we have by the Algebraic Limit Theorem that
Jm = Jim (e = 2,) +70) =0+ =

Thus (z,,) and (y,,) converge to = € K.

Because f is continuous at every point of K, we have the f(z,,) — f(x) and f(y,,) —
f(z), which by the Algebraic Limit Theorem implies that

tim | (20,) = S ()| = 0.

k—o0

This contradicts that |f(z,,) — f(yn,)| > € > 0. O



