
Math 341 Lecture #30
§6.4: Series of Functions

Recall that we constructed the continuous nowhere differentiable function from Section
5.4 by using a series.

We will develop the tools necessary to showing that this pointwise convergent series is
indeed a continuous function.

Definition 6.4.1. Let fn, n ∈ N, and f be functions on A ⊆ R. The infinite series

∞∑
n=1

fn(x) = f1(x) + f2(x) + f3(x) + · · ·

converges pointwise on A to f(x) if the sequence of partial sums,

sk(x) = f1(x) + f2(x) + · · ·+ fk(x)

converges pointwise to f(x).

The series converges uniformly on A to f if the sequence sk(x) converges uniformly on
A to f(x).

Uniform convergence of a series on A implies pointwise convergence of the series on A.

For a pointwise or uniformly convergent series we write

f =
∞∑
n=1

fn or f(x) =
∞∑
n=1

fn(x).

When the functions fn are continuous on A, each partial sum sk(x) is continuous on A
by the Algebraic Continuity Theorem (Theorem 4.3.4).

We can therefore apply the theory for uniformly convergent sequences to series.

Theorem 6.4.2 (Term-by-term Continuity Theorem). Let fn be continuous
functions on A ⊆ R. If

∞∑
n=1

fn

converges uniformly to f on A, then f is continuous on A.

Proof. We apply Theorem 6.2.6 to the partial sums sk = f1 + f2 + · · ·+ fk. �

When the functions fn are differentiable on a closed interval [a, b], we have that each
partial sum sk is differentiable on [a, b] as well.

We recall the result on differentiability of the limit function from Section 6.3.

Theorem 6.3.3. Let (fn) be a sequence of differentiable functions on the closed interval
[a, b], and assume (f ′

n) converges uniformly to a function g on [a, b]. If there is a point
x0 ∈ [a, b] such that fn(x0) is a convergent sequence, then (fn) converges uniformly, and
the limit function f = lim fn is differentiable with f ′ = g.



We now apply this Theorem to series.

Theorem 6.4.3 (Term-by-term Differentiability Theorem). Let fn be differen-
tiable functions on a closed interval [a, b]. If

∞∑
n=1

f ′
n

converges uniformly to a function g on [a, b], and if there is x0 ∈ [a, b] for which

∞∑
n=1

fn(x0)

converges, then
∞∑
n=1

fn

converges uniformly to a differentiable function f(x) satisfying f ′ = g on [a, b]. In other
words we have

f(x) =
∞∑
n=1

fn(x) and f ′ =
∞∑
n=1

f ′
n(x).

Proof. We apply Theorem 6.3.3 to the partial sums sk = f1 + f2 + · · · + fk, where we
have s′k = f ′

1 + f ′
2 + · · ·f ′

k. �

Like sequences, we have a Cauchy condition for series which is useful for examples and
proofs.

Theorem 6.4.4 (Cauchy Criterion for Uniform Convergence of Series). A
series

∞∑
n=1

fn

converges uniformly on A ⊆ R if and only if for every ε > 0 there exists N ∈ N such that
for all n > m ≥ N we have

|fm+1(x) + fm+2(x) + · · ·+ fn(x)| < ε for all x ∈ A.

Proof. For the partial sums sk we have when n > m that for all x ∈ A,

|sn(x)− sm(x)| = |fm+1(x) + fm+2(x) + · · ·+ fn(x)|.

We then apply the Cauchy Criterion for Uniform Convergence for sequences (Theorem
6.2.5). �

Uniform convergence is preferred over pointwise convergence because uniform conver-
gence gives better results for the limit functions.

How do we show a series is uniformly convergent?



Corollary 6.4.5 (Weierstrass M -Test). For each n ∈ N, let fn be a function on
A ⊆ R. If there exists a real Mn > 0 such that

|fn(x)| ≤Mn for all x ∈ A,

and the series
∞∑
n=1

Mn

converges, then
∞∑
n=1

fn

converges uniformly on A.

Proof. Let ε > 0.

Since the series
∑∞

n=1Mn converges, there exists by the Cauchy Criterion for Series
(Theorem 2.7.2) an N ∈ N such that for all n > m ≥ N we have that

Mm+1 +Mm+2 + · · ·+Mn < ε.

Since for each k ∈ N we have |fk(x)| ≤Mk for all x ∈ A, it follows for n > m ≥ N that

|fm+1(x) + fm+2(x) + · · ·+ fn(x)| ≤ |fm+1(x)|+ |fm+2(x)|+ · · ·+ |fn(x)|
≤Mm+1 +Mm+2 + · · ·+Mn

< ε.

Thus by the Cauchy Criterion for Uniform Convergence of Series (Theorem 6.4.4), we
conclude that

∑∞
n=1 fn converges uniformly. �

Example. Prove that the series
∞∑
n=1

n

n4 + x4

consisting of differentiable functions converges to a differentiable function.

Since for each n ∈ N we have n4 + x4 ≥ n4 for all x ∈ R, then

n

n4 + x4
≤ n

n4
=

1

n3
.

Setting fn(x) = n/(n4 + x4) and Mn = 1/n3 we have for each n ∈ N that |fn(x)| ≤ Mn

for all x ∈ R.

The series
∞∑
n=1

Mn =
∞∑
n=1

1

n3

converges by Corollary 2.4.7.



By the Weierstrass M -Test, the series

∞∑
n=1

fn(x) =
∞∑
n=1

n

n4 + x4

converges uniformly, so that its limit function f(x) is continuous on R by Theorem 6.4.2.

For each n ∈ N we have

f ′
n(x) = − 4nx3

(n4 + x4)2
.

For a real K > 0, we have for all x ∈ [−K,K] that

|f ′
n(x)| ≤

∣∣∣∣ 4nx3

(n4 + x4)2

∣∣∣∣ ≤ 4nK3

n8
=

4K3

n7
.

Since
∞∑
n=1

4K3

n7

converges, we have that f ′
n converges uniformly on [−K,K] by the Weierstrass M -Test.

Since
∑∞

n=1 fn(x0) converges to f(x0) for any x0 ∈ [−K,K], then by Theorem 6.4.3, we
have that f(x) is differentiable on [−K,K] with

f ′(x) =
∞∑
n=1

f ′
n(x) =

∞∑
n=1

−4nx3

(n4 + x4)2
.

Since K > 0 is arbitrary, we have that f is differentiable on R.


