Math 341 Lecture #30
§6.4: Series of Functions

Recall that we constructed the continuous nowhere differentiable function from Section
5.4 by using a series.

We will develop the tools necessary to showing that this pointwise convergent series is
indeed a continuous function.

Definition 6.4.1. Let f,, n € N, and f be functions on A C R. The infinite series

an = fi(2) + fola) + faz) +

converges pointwise on A to f(x) if the sequence of partial sums,

sk(x) = fi(x) + falx) + - -+ fr(x)

converges pointwise to f(x).

The series converges uniformly on A to f if the sequence si(z) converges uniformly on
A to f(x).
Uniform convergence of a series on A implies pointwise convergence of the series on A.

For a pointwise or uniformly convergent series we write

f= anorf an

When the functions f,, are continuous on A, each partial sum sg(z) is continuous on A
by the Algebraic Continuity Theorem (Theorem 4.3.4).

We can therefore apply the theory for uniformly convergent sequences to series.

Theorem 6.4.2 (Term-by-term Continuity Theorem). Let f, be continuous
functions on A C R. If

>

n=1

converges uniformly to f on A, then f is continuous on A.
Proof. We apply Theorem 6.2.6 to the partial sums s, = fi + fo + -+ + fx. d

When the functions f,, are differentiable on a closed interval [a,b], we have that each
partial sum sy is differentiable on [a, b] as well.

We recall the result on differentiability of the limit function from Section 6.3.

Theorem 6.3.3. Let (f,) be a sequence of differentiable functions on the closed interval
[a,b], and assume (f) converges uniformly to a function g on [a,b]. If there is a point
xo € [a,b] such that f,(x¢) is a convergent sequence, then (f,,) converges uniformly, and
the limit function f = lim f,, is differentiable with f' = g.



We now apply this Theorem to series.

Theorem 6.4.3 (Term-by-term Differentiability Theorem). Let f, be differen-

tiable functions on a closed interval [a, b]. If
>
n=1
converges uniformly to a function g on [a,b], and if there is zq € [a, b] for which

jz:f%(xO)
n=1
converges, then
>t
n=1

converges uniformly to a differentiable function f(x) satisfying f’ = g on [a, b]. In other
words we have

fl@) =) fale) and f' =3 f(2).
n=1 n=1
Proof. We apply Theorem 6.3.3 to the partial sums s, = f1 + fo + - - - + fix, where we
have s, = f{ + f3+ - -fl. 0

Like sequences, we have a Cauchy condition for series which is useful for examples and
proofs.

Theorem 6.4.4 (Cauchy Criterion for Uniform Convergence of Series). A

series
o0
E In
n=1

converges uniformly on A C R if and only if for every € > 0 there exists N € N such that
for all n > m > N we have

| frna1(x) + fonao(x) + -+ fu(z)| < € for all z € A.

Proof. For the partial sums s; we have when n > m that for all x € A,

|sn(2) = $m(2)] = [fms1(2) + frnra(@) + - - - + ful2)].
We then apply the Cauchy Criterion for Uniform Convergence for sequences (Theorem
6.2.5). O

Uniform convergence is preferred over pointwise convergence because uniform conver-
gence gives better results for the limit functions.

How do we show a series is uniformly convergent?



Corollary 6.4.5 (Weierstrass M-Test). For each n € N, let f, be a function on
A C R. If there exists a real M,, > 0 such that

| fu(z)| < M, for all z € A,

and the series N

> M,

n=1
converges, then

>

n=1
converges uniformly on A.

Proof. Let € > 0.

Since the series >~ M, converges, there exists by the Cauchy Criterion for Series
(Theorem 2.7.2) an N € N such that for all n > m > N we have that

Mm+1+Mm+2+"‘+Mn<€.

Since for each k € N we have |fi(z)| < M, for all z € A, it follows for n > m > N that

[frr1(2) + frnra(@) + -+ fo(0)] < [fnia (@) + [frsa(@)] + - 4 [ fu(2)]
SMm+1+Mm+2+"'+Mn
< E.

Thus by the Cauchy Criterion for Uniform Convergence of Series (Theorem 6.4.4), we
conclude that >~ | f,, converges uniformly. O

Example. Prove that the series

- n
consisting of differentiable functions converges to a differentiable function.
Since for each n € N we have n* + 2* > n? for all z € R, then

n n 1
nt+ax4 — nt  nd

Setting f,(r) = n/(n* + z*) and M,, = 1/n® we have for each n € N that |f,(z)| < M,
for all z € R.

The series - -
1

converges by Corollary 2.4.7.



By the Weierstrass M-Test, the series

> file) = Zj—nix

converges uniformly, so that its limit function f(z) is continuous on R by Theorem 6.4.2.

For each n € N we have

Anx3
/ s —
fn(l') - (n4 4 x4)2'
For a real K > 0, we have for all z € [-K, K| that
dnz? AInK3 4K3
! < < = .
|fn(x)| = (7’L4+ZL'4)2 nd n’
Since
4K
7
n=1 n

converges, we have that f/ converges uniformly on [— K, K] by the Weierstrass M-Test.

Since > 07 | fu(xo) converges to f(zo) for any x¢ € [~ K, K], then by Theorem 6.4.3, we
have that f(x) is differentiable on [—K, K| with

HOEDWAGEDY (n_i—”)

n=1

Since K > 0 is arbitrary, we have that f is differentiable on R.



