Math 341 Lecture #32
§6.6: Taylor Series

Most of the functions you have seen in Calculus, such as arctan, exp, and In, can be
written, or have a representation, as a convergent power series.

What about other familiar functions in Calculus?
Example 6.6.1. Find a power series representation for arctan.

We know that )

— arctan(t) = T

dt
and that

1
1—t:1+t+t2+t3+t4+---

for t € (—1,1) (the convergent geometric series).
Replacing t with —t2 in the geometric series give
1
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which is a convergent power series on the interval (—1, 1), i.e., the radius of convergence
is R=1.

By the Fundamental Theorem of Calculus we know that

|
arctan(z) = / dt.
0
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Now assuming that we can integrate a convergent power series term by term to get
another convergent power series (on the same open interval of convergence) we have that
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dt = -2+t =t Ydt=0 -+ — -+
/0 1+ ¢2 /0{ ! 3 5 7
and so we get the power series representation
3 5 7
x x x
arctan(z) =2 — — 4+ — — — + - -+, for |z| < 1.
(1) =2— T+ T =T forfal

You will investigate the convergence at = 1 (homework problem 6.6.1).

We will rigorous justify that the integration of convergent power series term by term
gives a convergent power series in Chapter 7.

Now we turn to the question of the relationship between a convergent power series f(z)
and the coeflicients a,, in it.

Theorem 6.6.2 (Taylor’s Formula). If, for some R > 0, we have

flz) = Zanx”, |z| < R,
n=0



then
f™(0)

n!
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Proof. To get the value of ag we set x = 0 in the power series to get

[o¢]
= E a,0" = ay.
n=0

To get the value of a; we set z = 0 in the first derivative to get

x
= E na, 0" ! = lay.
n=1

To get the value of as we set z = 0 in the second derivative to get
Zn (n —1)a,0" 2 = (2)(1)ay = 2las.
n=2

Continuing this pattern we get f™(0) = nla,, so that
£ (0)
n!
for each n =0,1,2,3,.... 0

The converse of Taylor’s Formula asks if we have an infinitely differentiable function f(x)
defined on an open interval I centered at 0, does the Taylor series for f,
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n=0

Ay =

(n)
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converge to f(z) on I?

Example. The function f(z) = sin(z) is infinitely differentiable on R. Since f(0) =0
f(0) =1, f"(0) =0, f*(0) = —1, with the pattern repeating forever, the Taylor series

for sin is
n) 3 5 7

oof B
S e G-

n=0

Does this Taylor’s series converge to sin(z)?

For a Taylor series

— f
>

convergence is in terms of the sequence of partial sums

M) (0
:an'( )x”:a0+a1x+---+aN:1:N.



We are asking whether for each x in the interval of convergence do we have

lim sy(x) = f(x).

N—oo

Recast we are asking if the error function

goes to 0 as n — oo.

Theorem 6.6.1 (Lagrange’s Theorem). Let f be infinitely differentiable on (—R, R)
for R > 0, and define a,, = f(™(0)/n!. For a nonzero = € (—R, R), there exists a point c
satisfying |c| < |z| such that
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Ev@) = a®

See the Appendix for a proof.
Example. The Taylor series of f(z) = cos(z) is

2?2zt 2

L=t gt

For every = # 0, there is by Lagrange’s Theorem a ¢ satisfying |c| < |z| such that

Nl
‘f +) N+1

| cos(x) — sy (x

Since |fN+Y ()] is either |cos(z)| or | sinz|, we have that |f(N+1)(c)| < 1.

Restricting = to the compact interval [— K, K| we then have that

KN+1

| cos(z) — ()|_(N+1)!—>O.

Since K is arbitrary, we conclude that for every x € R we have that

Is there an infinitely differentiable function f(x) whose Taylor series does not converge
to f(x)?

Counterexample. Consider the function

exp(—1/22%) ifx >0
gla) = 4 P
0 if x <0.

This function is infinitely differentiable when x # 0.



Is g differentiable at 07 Well,

i 92 =90) _
z—0~ xr — O
while )
— —1 1
i 9@ =90 . exp(=1/2%) . V&
a0t x—0 20+ x e—0+ exp(1/2?)

This is a co/oo situation, so by L’Hospital’s Rule we have
—1/2? , x

lim M = lim = lim —~ =0.
a0t x—0 =0t (—=2/x3) exp(1/2?)  a—0t 2exp(l/z?)

We we have that ¢ is differentiable at 0 with ¢’(0) = 0.
Similarly, we can show that g is infinitely differentiable at 0 with g™ (0) = 0.
Thus the Taylor series for g(x) is

< 4(0)
Z : n!

n=0

2" =040z + 022+ 023+ =0.

For x > 0 this Taylor series does not converge to g(x) since g(x) > 0 while the Taylor
series is 0.



Appendix. Proof of Lagrange’s Remainder Theorem. The Taylor coefficients ag, a1, . . ., ay
have been chosen so that f and sy have the same derivatives at x = 0, i.e.,

F(0) = s8(0), n=0,1,2,..., N,

= 0. Thus the error function satisfies

with SE\J,VH)

EW0)=0, n=0,1,2,...,N.

WLOG suppose x > 0. By the Generalized Mean Value Theorem to the functions Ey
and V! on the interval [0, z]: there exists z; € (0, ) such that

Ex(e) B
xN+1 (N + 1)V

We then apply the Generalized Mean Value Theorem to the functions E'(z) and (N +
1)z on the interval [0, z1]: there exists x5 € (0, ;) such that

Ex(r) _ ER(z)

(N+1)a) (N +1)Nap™"

Continuing to apply the Generalized Mean Value Theorem we obtain zx,1 € (0,2y5) C
-+ C (0, ) satisfying
E@y) By D en)
(N+1)N---2zy (N +1)!

Thus the first and last terms are the same:

En(z) _ EN " (@n )
N (N )

Since s%v+1)(xN+1) =0, we have E](VNH)(xNH) = fN+D(2n,41), so that with ¢ = 2y,

we obtain (N+1)( )
_f C) Nt1
En(@) = e



