Math 341 Lecture #35
§7.4: Properties of the Integral, Part I

We establish a result about the Riemann integral that we assumed in the previous lecture
to show that a bounded function with finitely many discontinuities is integrable.

This will require manipulating partitions.
Theorem 7.4.1. Assume f : [a,b] — R is bounded, and let ¢ € (a,b). Then f is

integrable on [a, b] if and only if f is integrable on [a, ¢] and on [¢, b]. In this case we have

/abf=/acf+/cbf-

Remark. We are suppressing the dx in the notation for the integral. It is understood
that we are using dz to measure the lengths of the subintervals in a partition of [a, b].

Proof. Suppose that f is integrable on [a, b].
Then for each € > 0 there exists a partition P such that U(f, P) — L(f, P) < e.
If ¢ € P, then we define partitions P, = P N [a,c] of [a,c] and P, = P N|c,b] of [c, b].

If ¢ ¢ P, then we refine P to include ¢, which refinement doesn’t alter U(f, P)—L(f, P) <
€, and proceed as above to form the partitions P, and Ps.

In the partition P we have ¢ = x; for some 0 < [ < n, and so
€ > U(f7P) _L(f>P>

k=1

!
> Z(Mk — my) Az,
k=1

:U(ﬁpl)—L(f,Pz)
because M, —my;, > 0 for all 1 <k <n.
Similarly we also get that
€ > U(f,P)—L(f,P) ZU(fa-PZ)_L(fvP?)

Thus f is integrable on [a, c] and f is integrable on [c, b].
Now suppose that f is integrable on [a,c] and f is integrable on [c, b].

For € > 0 there are partitions P; of [a,c| and P» of [c, b] such that

U(f, 1) — L(f, P1) <

Y

U<f7P2>—L(f,P2)<

NN N NN e Y



In the partition P = P; U P, of [a, b] there is 0 < I < n such that z; = ¢, and so

l

(Mk — mk)Al’k + Z (Mk — mk)Axk

k=1 k=l+1
= U(f, P\) = L(f, P\) + U(f, P2) = L(f, P»)
<273

Thus f is integrable on [a, ¢].

It remains to show that

t[f=[7+[3

for which we use the partitions P; and P, above.
With P = P, U P, we have that U(f, P) — L(f, P) < ¢, so that

U(f,P) < L(f, P) +e.

Because P = P, U P, where x; = ¢, we have

n

l
L(f,P) :Z(Mk:_mk Z Mk—mk AZL’k—l- Z Mk—mk)AZEk
k=1 k=1 k=l+1
= L(f, ) + L(f, P,).

Thus we have
b
[ r<vi P <Lip) e
=L(f,P)+ L(f, P) +

/f+/f+e

which, since € > 0 is arbitrary, implies that

b c b
[r<[s+]s
To get the other inequality, we recall that for the partitions P, and P, we have

U(f, 1) — L(f, P1) <
U(f,P) — L(f, P2) <

N AN ™



so that

c b
/f+/ f<U(f,P)+U(f,P)

<L(fvP1)+L(f,Pz)+§+§

Again, the arbitrariness of € > 0 implies that

/:f+/cbf§/abf-
/abfz/achr/cbf

as believed. ]

Rather than dealing with partitions all the time, we recall some familiar properties of
the integral.

Thus we obtain

Theorem 7.4.2. Assume that f and g are integrable functions on [a, b].
(i) The function f + g is integrable on [a, b] with f:(f +g) = fab f+ fab qg.
(ii) For k € R, the function kf is integrable with [*kf =k [ f.

(iii) If m < f < M, then m(b—a) < [* f < M(a —b).

)

)

(iv) If f < g then fa”fg ffg
(v) The function |f| is integrable and

/abf‘ﬁ/:|f|-

Proof. (i) This follows by showing that U(f+g, P) < U(f, P)+U(g, P) and L(f+g, P) >
L(f,P)+ L(g, P) for all partitions P.

For part (ii) we use the integrability of f to find partitions P, of [a, b] such that U(f, P,)—
L(f,P,) < 1/n.

Then for k > 0 we show that U(kf, P,) = kU(f, P,) and L(kf, P,) = kL(f, P,) so that
U(kf,P,) — L(kfn, P,) < k/n which goes to 0.

Thus kf is integrable on [a, b], and fab kf = k;fabf
What happens when £ < 07
Part (iii) follows by taking the trivial partition P = {a, b}.

Part (iv) follows by setting h = g — f > 0 and applying parts (i), (ii), and (iii).
Parti (v) is a Homework Problem (Exercises 7.4.1). O



