
Math 341 Lecture #35
§7.4: Properties of the Integral, Part I

We establish a result about the Riemann integral that we assumed in the previous lecture
to show that a bounded function with finitely many discontinuities is integrable.

This will require manipulating partitions.

Theorem 7.4.1. Assume f : [a, b] → R is bounded, and let c ∈ (a, b). Then f is
integrable on [a, b] if and only if f is integrable on [a, c] and on [c, b]. In this case we have∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Remark. We are suppressing the dx in the notation for the integral. It is understood
that we are using dx to measure the lengths of the subintervals in a partition of [a, b].

Proof. Suppose that f is integrable on [a, b].

Then for each ε > 0 there exists a partition P such that U(f, P )− L(f, P ) < ε.

If c ∈ P , then we define partitions P1 = P ∩ [a, c] of [a, c] and P2 = P ∩ [c, b] of [c, b].

If c 6∈ P , then we refine P to include c, which refinement doesn’t alter U(f, P )−L(f, P ) <
ε, and proceed as above to form the partitions P1 and P2.

In the partition P we have c = xl for some 0 < l < n, and so

ε > U(f, P )− L(f, P )

=
n∑

k=1

(Mk −mk)∆xk

≥
l∑

k=1

(Mk −mk)∆xk

= U(f, P1)− L(f, P2)

because Mk −mk ≥ 0 for all 1 ≤ k ≤ n.

Similarly we also get that

ε > U(f, P )− L(f, P ) ≥ U(f, P2)− L(f, P2).

Thus f is integrable on [a, c] and f is integrable on [c, b].

Now suppose that f is integrable on [a, c] and f is integrable on [c, b].

For ε > 0 there are partitions P1 of [a, c] and P2 of [c, b] such that

U(f, P1)− L(f, P1) <
ε

2
,

U(f, P2)− L(f, P2) <
ε

2
.



In the partition P = P1 ∪ P2 of [a, b] there is 0 < l < n such that xl = c, and so

U(f, P )− L(f, P ) =
n∑

k=1

(Mk −mk)∆xk

=
l∑

k=1

(Mk −mk)∆xk +
n∑

k=l+1

(Mk −mk)∆xk

= U(f, P1)− L(f, P1) + U(f, P2)− L(f, P2)

<
ε

2
+
ε

2
= ε.

Thus f is integrable on [a, c].

It remains to show that ∫ b

a

f =

∫ c

a

f +

∫ b

c

f

for which we use the partitions P1 and P2 above.

With P = P1 ∪ P2 we have that U(f, P )− L(f, P ) < ε, so that

U(f, P ) < L(f, P ) + ε.

Because P = P1 ∪ P2 where xl = c, we have

L(f, P ) =
n∑

k=1

(Mk −mk)∆xk =
l∑

k=1

(Mk −mk)∆xk +
n∑

k=l+1

(Mk −mk)∆xk

= L(f, P1) + L(f, P2).

Thus we have ∫ b

a

f ≤ U(f, P ) < L(f, P ) + ε

= L(f, P1) + L(f, P2) + ε

≤
∫ c

a

f +

∫ b

c

f + ε,

which, since ε > 0 is arbitrary, implies that∫ b

a

f ≤
∫ c

a

f +

∫ b

c

f.

To get the other inequality, we recall that for the partitions P1 and P2 we have

U(f, P1)− L(f, P1) <
ε

2
,

U(f, P2)− L(f, P2) <
ε

2
,



so that ∫ c

a

f +

∫ b

c

f ≤ U(f, P1) + U(f, P2)

< L(f, P1) + L(f, P2) +
ε

2
+
ε

2
= L(f, P ) + ε

≤
∫ b

a

f + ε.

Again, the arbitrariness of ε > 0 implies that∫ c

a

f +

∫ b

c

f ≤
∫ b

a

f.

Thus we obtain ∫ b

a

f =

∫ c

a

f +

∫ b

c

f

as believed. �

Rather than dealing with partitions all the time, we recall some familiar properties of
the integral.

Theorem 7.4.2. Assume that f and g are integrable functions on [a, b].

(i) The function f + g is integrable on [a, b] with
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

(ii) For k ∈ R, the function kf is integrable with
∫ b

a
kf = k

∫ b

a
f .

(iii) If m ≤ f ≤M , then m(b− a) ≤
∫ b

a
f ≤M(a− b).

(iv) If f ≤ g then
∫ b

a
f ≤

∫ b

a
g.

(v) The function |f | is integrable and∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

Proof. (i) This follows by showing that U(f+g, P ) ≤ U(f, P )+U(g, P ) and L(f+g, P ) ≥
L(f, P ) + L(g, P ) for all partitions P .

For part (ii) we use the integrability of f to find partitions Pn of [a, b] such that U(f, Pn)−
L(f, Pn) < 1/n.

Then for k ≥ 0 we show that U(kf, Pn) = kU(f, Pn) and L(kf, Pn) = kL(f, Pn) so that
U(kf, Pn)− L(kfn, Pn) < k/n which goes to 0.

Thus kf is integrable on [a, b], and
∫ b

a
kf = k

∫ b

a
f .

What happens when k < 0?

Part (iii) follows by taking the trivial partition P = {a, b}.
Part (iv) follows by setting h = g − f ≥ 0 and applying parts (i), (ii), and (iii).

Parti (v) is a Homework Problem (Exercises 7.4.1). �


