
Math 113 Lecture #4
§6.2: Volumes

Defining Volume by Slicing. Slice a solid S lying along the x-axis, by n parallel
planes Px1 , . . . , Pxn perpendicular to the x-axis and located at equally spaced points
x1, . . . , xn.

For each slab Si so obtained, we choose a point x∗i in [xi−1, xi] at which to measure the
cross-sectional area A(x∗i ) of the part of Si that lies in the plane Px∗

i
.

The volume of the ith slab is
V (Si) ≈ A(x∗i )∆x.

An approximation of the volume of the solid is the sum of the approximations of the
volumes of the slabs of the slicing:

V (S) ≈
n∑

i=1

A(x∗i )∆x.

If A(x) be the cross-sectional area of S at x, then the volume of the solid S is

V (S) = lim
n→∞

n∑
i=1

A(x∗i )∆x =

∫ b

a

A(x) dx

provided the limit exists (which is the case if A(x) is continuous on [a, b]).

Example 1. Let R be the region in the xy-plane enclosed by the curves y = 1/x, x = 1,
x = 2, and y = 0. Here are these curves.
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Revolving the region about the x-axis determines a solid S.

For this solid of revolution, each slab of the slicing is a disk with radius given by the top
curve of the region:

A(x) = π

(
1

x

)2

.

As this A(x) is continuous on [1, 2], the volume of the solid of revolution is

V =

∫ 2

1

A(x) dx =

∫ 2

1

π

x2
dx = π

[
−1

x

]2
1

= π

(
− 1

2
− (−1)

)
=
π

2
.

Example 2. Let R be the region in the xy-plane enclosed by the curves y = x2/4, x = 2,
and y = 0. Here are these curves.
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Revolving the region R about the y-axis determines a solid S.

For this solid of revolution, each slab of the slicing is a washer with the outer radius given
by the right curve, and the inner radius given by the left curve of the region.

The left curve is y = x2/4, or solving it for x, it is x =
√

4y.

The radii needed are functions of y:

A(y) = π
(
2)2 − π

(√
4y)2 = 4π − 4πy = 4π(1− y).

As this A(y) is continuous on [0, 1], the volume of the solid of revolution is

V =

∫ 1

0

A(y) dy = 4π

∫ 1

0

(1− y) dy = 4π

[
y − y2

2

]1
0

= 2π.

Example 3. Find the volume of the solid of revolution obtained by revolving about
x = 2 the region enclosed by x = y2 and x = 1.

Here is a graph of the region enclosed by the curves.
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The curves intersect at (1, 1) and (1,−1).

There is an outer radius of 2− x and the inner radius of 2− 1 = 1.

The cross-sectional area is

A(y) = π(2− x)2 − π(1)2 = π
(
2− y2

)2 − π.



The volume of the new solid is

V =

∫ 1

−1
A(y) dy = π

∫ 1

−1

[
(2− y2)2 − 1

]
dy

= 2π

∫ 1

0

[
(2− y2)2 − 1

]
dy = 2π

∫ 1

0

(
4− 4y2 + y4 − 1

)
dy

= 2π

∫ 1

0

(
3− 4y2 + y4

)
dy = 2π

[
3y − 4y3

3
+
y5

5

]1
0

= 2π

(
3− 4

3
+

1

5

)
=

56π

15
.

Example 4. Find the volume of a pyramid of height h and base an equilateral triangle
with side a where the horizontal slices are equilateral triangles (a solid known as a
tetrahedron).

Draw this picture.

Label two vertices of the base by L and R, the center of the base O, and the top vertex
of the solid T .

The distance between L and R is the given base length of a.

Let b be the length of the line from R to O.

Let the y-axis be situated so that the origin is at the center of the base O and the positive
direction of y goes through the top vertex T .

At horizontal slice at height y is an equilateral triangle with two vertices A and B on the
lines LT and RT respectively.

Let α be the side of this equilateral triangle, i.e., the length of the line AB.

Let M be center of the equilateral triangle at height y; the point M lies on the line OT .

Let β be the length of the line MB.

The two triangles LRO and ABM are similar, and so

a

b
=
α

β
.

This says that

α =
aβ

b
.

The triangles ORT and MBT are also similar, so that

b

h
=

β

h− y
.

This says that

β =
b(h− y)

h
.



We can now determine the length of the side of the equilateral triangle at height y:

α =
a

b
· β =

a

b
· b(h− y)

h
= a

(
1− y

h

)
.

The area of the equilateral triangle at height y is thus

A(y) =
1

2
· α ·
√

3

2
α =

√
3

4
a2
(

1− y

h

)2
(where we have used the one-half base times height formula).

Finally, we can compute the volume of the tetrahedron:

V =

∫ h

0

A(y) dy

=

∫ h

0

√
3

4
a2
(

1− y

h

)2
dy

=

√
3 a2

4

∫ h

0

(
1− y

h

)2
dy [u = 1− y/h, du = −(1/h)dy]

=

√
3 a2

4

∫ 0

1

(
− hu2

)
du

=

√
3 a2h

4

∫ 1

0

u2 du

=

√
3 a2h

4

[
u3

3

]1
0

=

√
3 a2h

12
.

Now if the height of the pyramid were equal to the side of the equilateral base of a, then
the volume of the pyramid would be

V =

√
3 a3

12
.


