
Math 113 Lecture #8
§7.1: Integration by Parts

Integration by Parts for Indefinite Integrals. Just like the substitution rule for
integration comes from the Chain Rule for differentiation, integration by parts is the
integration rule that comes from the product rule for differentiation.

Recall for differentiable functions f(x) and g(x) that the product rule is

d

dx

[
f(x)g(x)

]
= f ′(x)g(x) + f(x)g′(x).

Integration of this rule gives

f(x)g(x) =

∫
f ′(x)g(x) dx +

∫
f(x)g′(x) dx.

Rearranging terms gives the rule for integration by part:∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx.

Sometimes this rule is easier to remember when written differently: for

u = f(x) and dv = g′(x)dx,

then
du = f ′(x)dx and v = g(x),

so that integration by parts becomes∫
udv = uv −

∫
vdu.

To apply integration by parts, we typically choose u and dv from the original integrand

so that

∫
v du is easier to integrate than

∫
u dv.

Example 1. Evaluate

∫
t sin 2t dt.

If we choose u = t and dv = sin 2t dt, then du = dt and v = −(1/2) cos 2t, so that
integration by parts gives∫

t sin 2t dt = −t cos 2t

2
−
∫
− cos 2t

2
dt

= −t cos 2t

2
+

1

2

∫
cos 2t dt

= −t cos 2t

2
+

sin 2t

4
+ C.

Do NOT forgot the arbitrary constant!



This answer can be verified by differentiation:

d

dt

[
− t cos 2t

2
+

sin 2t

4
+ C

]
=
− cos 2t + 2t sin 2t

2
+

2 cos 2t

4
= t sin 2t X.

Example 2. Evaluate

∫
arctan 4t dt.

If we choose u = arctan 4t and dv = dt, then du = 4dt/(1 + (4t)2) and v = t, so that∫
arctan 4t dt = t arctan 4t−

∫
4t

1 + (4t)2
dt [u = 1 + (4t)2, du = 32tdt]

= t arctan 4t− 1

8

∫
du

u

= t arctan 4t− ln |u|
8

+ C

= t arctan 4t− ln |1 + (4t)2|
8

+ C.

We can verify this:

d

dt

[
t arctan 4t− ln |1 + (4t)2|

8
+ C

]
= arctan 4t + t

4

1 + (4t)2
− 1

8

32t

1 + (4t)2

= arctan 4t X.

Example 3. Evaluate

∫
(lnx)2 dx.

If we let u = lnx and dv = lnxdx, then du = dx/x and v = ?????.

Instead we could try u = (lnx)2 and dv = dx, so that du = 2(lnx)/x and v = x, whence∫
(lnx)2 dx = x(lnx)2 −

∫
2 lnx dx = x(lnx)2 − 2

∫
lnx dx.

How do we integrate lnx? We take u = lnx and dv = dx so that u = dx/x and v = x,
whence ∫

lnx dx = x lnx−
∫

dx = x lnx− x + C.

Putting it all together gives∫
(lnx)2 dx = x(lnx)2 − 2

∫
lnx dx = x(lnx)2 − 2(x lnx− x) + C.

We can verify this:

d

dx

[
x(lnx)2 − 2(x lnx− x) + C

]
= (lnx)2 + 2 lnx− 2 lnx− 2 + 2 = (lnx)2 X.

Reduction Formulas for Integration. There appears in Example 3 a reduction of
the power of lnx with each use of integration by parts.



Identifying these kinds of patterns gives what are called reduction formulas for integra-
tion.

Example 4. Find a reduction formula for

∫
(lnx)n dx where n is a nonnegative integer.

If we choose u = (lnx)n and dv = dx, then du = nx−1(lnx)n−1dx and v = x, so that∫
(lnx)n dx = x(lnx)n − n

∫
(lnx)n−1 dx

is a reduction formula for this integral.

Example 5. Find a reduction formula for

∫
xnex dx where n is a nonnegative integer.

If we choose u = xn and dv = exdx, then du = nxn−1dx and v = ex, so that∫
xnex dx = xnex − n

∫
xn−1ex dx

is a reduction formula for this integral.

Integration by Parts for Definite Integrals. Assuming that f ′(x) and g′(x) are
continuous, we can show by the Fundamental Theorem of Calculus Part II that integra-
tion by parts works for definite integrals:∫ b

a

f(x)g′(x) dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a

f ′(x)g(x) dx.

Example 6. Evaluate

∫ 2

1

lnx

x2
dx.

If we choose u = lnx and dv = x−2dx, then du = x−1dx and v = −x−1, so that∫ 2

1

lnx

x2
dx = − lnx

x

∣∣∣∣2
1

+

∫ 2

1

dx

x2

= − lnx

x

∣∣∣∣2
1

− 1

x

∣∣∣∣2
1

= − ln 2

2
+ 0− 1

2
+ 1

=
1− ln 2

2
.

Although it may be impossible to verify this number as being correct, we can check the
indefinite integral we used to do the evaluation:

d

dx

[
− lnx

x
− 1

x

]
= −1− lnx

x2
+

1

x2
=

lnx

x2
X.


