
Math 113 Lecture #10
§7.3: Trigonometric Substitutions

Inverse Substitutions by Trigonometric (Hyperbolic) Functions. Reversing
the Substitution Rule sometimes leads to simplier integrals: if x = g(t) for g invertible
and differentiable, then dx = g′(t)dt and∫

f(x) dx =

∫
f(g(t))g′(t) dt.

This kind of inverse substitution can give f(g(t))g′(t) as simpler to integrate than f(x).

The choice of g as a trigonometric or hyperbolic trigonometric function can eliminate
square roots from the integrand.

Example 1. Evaluate

∫
1

x2
√
x2 − 9

dx.

We can use the trigonometric identity sec2 θ−1 = tan2 θ to choose an inverse substitution:

x = 3 sec θ, dx = 3 sec θ tan θ dθ.

Why the factor of 3?

With this inverse substitution, the integral becomes∫
1

x2
√
x2 − 9

dx =

∫
3 sec θ tan θ

9 sec2 θ
√

9 sec2 θ − 9
dθ

=

∫
sec θ tan θ

9 sec2 θ
√

tan2 θ
dθ

=

∫
sec θ tan θ

9 sec2 θ| tan θ|
dθ.

Remember that
√
y2 = |y| in general, and that

√
y2 = y only if we known that y ≥ 0.

So we ASSUME that tan θ ≥ 0, so that | tan θ| = tan θ, i.e., that 0 < θ < π/2.

With the assumption, the integral becomes∫
1

x2
√
x2 − 9

dx =
1

9

∫
1

sec θ
dθ

=
1

9

∫
cos θ dθ

=
sin θ

9
+ C.

We must express this indefinite integrals in terms of the original variable x, but how?

The function sec in x = 3 sec θ is invertible on (0, π/2), and so

θ = sec−1(x/3).



Thus the indefinite integral is∫
1

x2
√
x2 − 9

dx =
sin
(

sec−1(x/3)
)

9
+ C.

The composition of sine with the inverse of secant is messy. Can it be simplified?

Yes, it can with the use of a right-angle triangle: one angle is θ which lies between 0 and
π/2, and since sec θ = x/3, the side of the triangle adjacent to the angle θ has length 3
and the hypothenuse has length x.

The Pythagorean Theorem then gives the length of the side opposite θ as
√
x2 − 9, and

so

sin(sec−1(x/3)) = sin θ =

√
x2 − 9

x
.

The indefinite integral is then∫
1

x2
√
x2 − 9

dx =

√
x2 − 9

9x
+ C.

We can (and should) verify this (especially after all the work we did to get it):

d

dx

√
x2 − 9

9x
=

(1/2)(x2 − 9)−1/2(2x)(9x)− 9
√
x2 − 9

81x2

=
x2(x2 − 9)−1/2 −

√
x2 − 9

9x2

√
x2 − 9√
x2 − 9

=
x2 − (x2 − 9)

9x2
√
x2 − 9

=
1

x2
√
x2 − 9

X.

Example. Evaluate

∫
x3
√

9− x2 dx.

The trigonometric identity sin2 θ + cos2 θ = 1 suggests the inverse substitution of

x = 3 sin θ, dx = 3 cos θ dθ.

For θ in (0, π/2), the indefinite integral becomes∫
x3
√

9− x2 dx =

∫
27 sin3 θ

√
9− 9 sin2 θ (3 cos θ) dθ

= 243

∫
sin3 θ cos2 θ dθ.

With the power of sine being odd, we use the substitution u = cos θ, du = − sin θdθ to
convert the integrand into a polynomial:



∫
x3
√

9− x2 dx = 243

∫ (
1− cos2 θ) cos2 θ sin θ dθ

= −243

∫
(1− u2)u2 du

= −243

∫ (
u2 − u4

)
du

= −243

[
u3

3
− u5

5

]
+ C.

Since x = 3 sin θ and θ is in (0, π/2) where sin is invertible, we get θ = sin−1(x/3).

Since u = cos θ, we get∫
x3
√

9− x2 dx = −243

[
cos3(sin−1(x/3))

3
− cos5(sin−1(x/3))

5

]
+ C.

Again, by a right-angled triangle with θ as one angle, x as the side opposite θ, and 3 as
the hypothenuse, we get that

cos(sin−1(x/3)) =

√
9− x2

3
.

Thus the indefinite integral is∫
x3
√

9− x2 dx = −243

[
(9− x2)3/2

81
− (9− x2)5/2

243× 5

]
+ C

= −3(9− x2)3/2 +
(9− x2)5/2

5
+ C.

We may think that this does not “look” right, but we can tell for sure by verification:

d

dx

[
−3(9− x2)3/2 +

(9− x2)5/2

5
+ C

]
= −9

2

√
9− x2(−2x) +

1

2
(9− x2)3/2(−2x)

= 9x
√

9− x2 − x(9− x2)3/2

= x
√

9− x2
(
9− (9− x2)

)
= x3
√

9− x2X .

Evaluation of Definite Integrals by Inverse Substitutions. When we deal with
definite integrals, we do not have to undo all the changes we made along the way.

Example 3. Evaluate

∫ 1

0

√
x2 + 1 dx.

The trigonometric identity 1 + tan2 θ = sec2 θ suggest the inverse substitution

x = tan θ, dx = sec2 θ dθ.



Here the limits of integration become 0 = tanu or u = 0, and 1 = tanu or u = π/4, so
that the definite integral becomes∫ 1

0

√
x2 + 1 dx =

∫ π/4

0

√
tan2 θ + 1 sec2 θ dθ

=

∫ π/4

0

sec3 θ dθ.

With the power of secant being odd, there is no trigonometric identity that will help us
here.

Instead we opt for an integration by parts approach: with

u = sec θ, dv = sec2 θ dθ, du = sec θ tan θ dθ, v = tan θ,

the definite integral becomes∫ π/4

0

sec3 θ dθ = sec θ tan θ

∣∣∣∣π/4
0

−
∫ π/4

0

sec θ tan2 θ dθ

=
2√
2
−
∫ π/4

0

sec θ(sec2 θ − 1) dθ

=
2√
2
−
∫ π/4

0

sec3 θ dθ +

∫ π/4

0

sec θ dθ.

Combining the two integrals involving the cube of secant gives∫ π/4

0

sec3 θ dθ =
1√
2

+
1

2

∫ π/4

0

sec θ dθ

=
1√
2

+
1

2

[
ln | sec θ + tan θ|

]π/4
0

=
1√
2

+
1

2

[
ln

∣∣∣∣ 2√
2

+ 1

∣∣∣∣− ln |1 + 0|
]

=
1√
2

+
1

2
ln(1 +

√
2).

Along the way, we learned that∫
sec3 θ dθ =

sec θ tan θ + ln | sec θ + tan θ|
2

+ C,

from using integration by parts and∫
sec θ dθ = ln | sec θ + tan θ|+ C.


