Math 113 Lecture #10 §7.3: Trigonometric Substitutions

Inverse Substitutions by Trigonometric (Hyperbolic) Functions. Reversing the Substitution Rule sometimes leads to simplier integrals: if x = g(t) for g invertible and differentiable, then dx = g'(t)dt and

$$\int f(x) \, dx = \int f(g(t))g'(t) \, dt$$

This kind of *inverse substitution* can give f(g(t))g'(t) as simpler to integrate than f(x).

The choice of g as a trigonometric or hyperbolic trigonometric function can eliminate square roots from the integrand.

Example 1. Evaluate $\int \frac{1}{x^2\sqrt{x^2-9}} dx.$

We can use the trigonometric identity $\sec^2 \theta - 1 = \tan^2 \theta$ to choose an inverse substitution:

$$x = 3 \sec \theta, \quad dx = 3 \sec \theta \tan \theta \ d\theta.$$

Why the factor of 3?

With this inverse substitution, the integral becomes

$$\int \frac{1}{x^2 \sqrt{x^2 - 9}} \, dx = \int \frac{3 \sec \theta \tan \theta}{9 \sec^2 \theta \sqrt{9 \sec^2 \theta - 9}} \, d\theta$$
$$= \int \frac{\sec \theta \tan \theta}{9 \sec^2 \theta \sqrt{\tan^2 \theta}} \, d\theta$$
$$= \int \frac{\sec \theta \tan \theta}{9 \sec^2 \theta |\tan \theta|} \, d\theta.$$

Remember that $\sqrt{y^2} = |y|$ in general, and that $\sqrt{y^2} = y$ only if we known that $y \ge 0$. So we ASSUME that $\tan \theta \ge 0$, so that $|\tan \theta| = \tan \theta$, i.e., that $0 < \theta < \pi/2$. With the assumption, the integral becomes

$$\int \frac{1}{x^2 \sqrt{x^2 - 9}} \, dx = \frac{1}{9} \int \frac{1}{\sec \theta} \, d\theta$$
$$= \frac{1}{9} \int \cos \theta \, d\theta$$
$$= \frac{\sin \theta}{9} + C.$$

We must express this indefinite integrals in terms of the original variable x, but how? The function sec in $x = 3 \sec \theta$ is invertible on $(0, \pi/2)$, and so

$$\theta = \sec^{-1}(x/3).$$

Thus the indefinite integral is

$$\int \frac{1}{x^2 \sqrt{x^2 - 9}} \, dx = \frac{\sin\left(\sec^{-1}(x/3)\right)}{9} + C.$$

The composition of sine with the inverse of secant is messy. Can it be simplified?

Yes, it can with the use of a right-angle triangle: one angle is θ which lies between 0 and $\pi/2$, and since $\sec \theta = x/3$, the side of the triangle adjacent to the angle θ has length 3 and the hypothenuse has length x.

The Pythagorean Theorem then gives the length of the side opposite θ as $\sqrt{x^2 - 9}$, and so

$$\sin(\sec^{-1}(x/3)) = \sin\theta = \frac{\sqrt{x^2 - 9}}{x}.$$

The indefinite integral is then

$$\int \frac{1}{x^2 \sqrt{x^2 - 9}} \, dx = \frac{\sqrt{x^2 - 9}}{9x} + C.$$

We can (and should) verify this (especially after all the work we did to get it):

$$\frac{d}{dx}\frac{\sqrt{x^2-9}}{9x} = \frac{(1/2)(x^2-9)^{-1/2}(2x)(9x) - 9\sqrt{x^2-9}}{81x^2}$$
$$= \frac{x^2(x^2-9)^{-1/2} - \sqrt{x^2-9}}{9x^2} \frac{\sqrt{x^2-9}}{\sqrt{x^2-9}}$$
$$= \frac{x^2 - (x^2-9)}{9x^2\sqrt{x^2-9}}$$
$$= \frac{1}{x^2\sqrt{x^2-9}} \checkmark.$$

Example. Evaluate $\int x^3 \sqrt{9 - x^2} \, dx$.

The trigonometric identity $\sin^2 \theta + \cos^2 \theta = 1$ suggests the inverse substitution of

$$x = 3\sin\theta, \ dx = 3\cos\theta \ d\theta.$$

For θ in $(0, \pi/2)$, the indefinite integral becomes

$$\int x^3 \sqrt{9 - x^2} \, dx = \int 27 \sin^3 \theta \sqrt{9 - 9 \sin^2 \theta} \, (3 \cos \theta) \, d\theta$$
$$= 243 \int \sin^3 \theta \cos^2 \theta \, d\theta.$$

With the power of sine being odd, we use the substitution $u = \cos \theta$, $du = -\sin \theta d\theta$ to convert the integrand into a polynomial:

$$\int x^3 \sqrt{9 - x^2} \, dx = 243 \int \left(1 - \cos^2 \theta\right) \cos^2 \theta \sin \theta \, d\theta$$
$$= -243 \int (1 - u^2) u^2 \, du$$
$$= -243 \int \left(u^2 - u^4\right) \, du$$
$$= -243 \left[\frac{u^3}{3} - \frac{u^5}{5}\right] + C.$$

Since $x = 3\sin\theta$ and θ is in $(0, \pi/2)$ where sin is invertible, we get $\theta = \sin^{-1}(x/3)$. Since $u = \cos\theta$, we get

$$\int x^3 \sqrt{9 - x^2} \, dx = -243 \left[\frac{\cos^3(\sin^{-1}(x/3))}{3} - \frac{\cos^5(\sin^{-1}(x/3))}{5} \right] + C.$$

Again, by a right-angled triangle with θ as one angle, x as the side opposite θ , and 3 as the hypothenuse, we get that

$$\cos(\sin^{-1}(x/3)) = \frac{\sqrt{9-x^2}}{3}.$$

Thus the indefinite integral is

$$\int x^3 \sqrt{9 - x^2} \, dx = -243 \left[\frac{(9 - x^2)^{3/2}}{81} - \frac{(9 - x^2)^{5/2}}{243 \times 5} \right] + C$$
$$= -3(9 - x^2)^{3/2} + \frac{(9 - x^2)^{5/2}}{5} + C.$$

We may think that this does not "look" right, but we can tell for sure by verification:

$$\frac{d}{dx} \left[-3(9-x^2)^{3/2} + \frac{(9-x^2)^{5/2}}{5} + C \right] = -\frac{9}{2}\sqrt{9-x^2}(-2x) + \frac{1}{2}(9-x^2)^{3/2}(-2x)$$
$$= 9x\sqrt{9-x^2} - x(9-x^2)^{3/2}$$
$$= x\sqrt{9-x^2}\left(9-(9-x^2)\right)$$
$$= x^3\sqrt{9-x^2}\checkmark .$$

Evaluation of Definite Integrals by Inverse Substitutions. When we deal with definite integrals, we do not have to undo all the changes we made along the way.

Example 3. Evaluate $\int_0^1 \sqrt{x^2 + 1} \, dx$.

The trigonometric identity $1 + \tan^2 \theta = \sec^2 \theta$ suggest the inverse substitution

$$x = \tan \theta, \ dx = \sec^2 \theta \ d\theta.$$

Here the limits of integration become $0 = \tan u$ or u = 0, and $1 = \tan u$ or $u = \pi/4$, so that the definite integral becomes

$$\int_0^1 \sqrt{x^2 + 1} \, dx = \int_0^{\pi/4} \sqrt{\tan^2 \theta + 1} \, \sec^2 \theta \, d\theta$$
$$= \int_0^{\pi/4} \sec^3 \theta \, d\theta.$$

With the power of secant being odd, there is no trigonometric identity that will help us here.

Instead we opt for an integration by parts approach: with

$$u = \sec \theta, \quad dv = \sec^2 \theta \, d\theta, \quad du = \sec \theta \tan \theta \, d\theta, \quad v = \tan \theta,$$

the definite integral becomes

$$\int_0^{\pi/4} \sec^3 \theta \ d\theta = \sec \theta \tan \theta \Big|_0^{\pi/4} - \int_0^{\pi/4} \sec \theta \tan^2 \theta \ d\theta$$
$$= \frac{2}{\sqrt{2}} - \int_0^{\pi/4} \sec \theta (\sec^2 \theta - 1) \ d\theta$$
$$= \frac{2}{\sqrt{2}} - \int_0^{\pi/4} \sec^3 \theta \ d\theta + \int_0^{\pi/4} \sec \theta \ d\theta.$$

Combining the two integrals involving the cube of secant gives

$$\int_{0}^{\pi/4} \sec^{3}\theta \ d\theta = \frac{1}{\sqrt{2}} + \frac{1}{2} \int_{0}^{\pi/4} \sec\theta \ d\theta$$
$$= \frac{1}{\sqrt{2}} + \frac{1}{2} \left[\ln|\sec\theta + \tan\theta| \right]_{0}^{\pi/4}$$
$$= \frac{1}{\sqrt{2}} + \frac{1}{2} \left[\ln\left|\frac{2}{\sqrt{2}} + 1\right| - \ln|1+0| \right]$$
$$= \frac{1}{\sqrt{2}} + \frac{1}{2} \ln(1+\sqrt{2}).$$

Along the way, we learned that

$$\int \sec^3 \theta \ d\theta = \frac{\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta|}{2} + C,$$

from using integration by parts and

$$\int \sec\theta \ d\theta = \ln|\sec\theta + \tan\theta| + C.$$