Math 113 Lecture #10
§7.3: Trigonometric Substitutions

Inverse Substitutions by Trigonometric (Hyperbolic) Functions. Reversing
the Substitution Rule sometimes leads to simplier integrals: if x = ¢(t) for g invertible
and differentiable, then dx = ¢'(t)dt and
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This kind of inverse substitution can give f(g(t))g'(t) as simpler to integrate than f(z).

The choice of g as a trigonometric or hyperbolic trigonometric function can eliminate
square roots from the integrand.
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We can use the trigonometric identity sec? §—1 = tan? 6 to choose an inverse substitution:

Example 1. Evaluate

x =3sec, dr = 3secHtanf db.

Why the factor of 37

With this inverse substitution, the integral becomes
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Remember that /4% = |y| in general, and that \/y? = y only if we known that y > 0.
So we ASSUME that tan @ > 0, so that |tanf| = tan#, i.e., that 0 < 6 < 7/2.

With the assumption, the integral becomes
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We must express this indefinite integrals in terms of the original variable z, but how?

The function sec in x = 3secf is invertible on (0,7/2), and so

0 = sec(z/3).



Thus the indefinite integral is

1 4 sin (sec™(x/3))
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The composition of sine with the inverse of secant is messy. Can it be simplified?

+C.

Yes, it can with the use of a right-angle triangle: one angle is # which lies between 0 and
7/2, and since sec = x/3, the side of the triangle adjacent to the angle 6 has length 3
and the hypothenuse has length z.

The Pythagorean Theorem then gives the length of the side opposite # as vx? — 9, and
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The indefinite integral is then
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We can (and should) verify this (especially after all the work we did to get it):
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Example. Evaluate / 39 — a2 du.

The trigonometric identity sin? @ 4 cos? § = 1 suggests the inverse substitution of
x =3sinf, dr = 3cosf df.

For 6 in (0,7/2), the indefinite integral becomes
/x3\/9 — 22 dr = /27sin3 0/ 9 — 9sin® 6 (3cosd) df
= 243/sin3 0 cos® 6 db.

With the power of sine being odd, we use the substitution u = cos#, du = —sin6df to
convert the integrand into a polynomial:
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Since z = 3sinf and @ is in (0,7/2) where sin is invertible, we get § = sin~!(x/3).

Since u = cos 6, we get

[aVo=t d = 213 {Cos%sm;(x/s» - oo O

Again, by a right-angled triangle with 6 as one angle, x as the side opposite #, and 3 as
the hypothenuse, we get that
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Thus the indefinite integral is
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We may think that this does not “look” right, but we can tell for sure by verification:
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Evaluation of Definite Integrals by Inverse Substitutions. When we deal with
definite integrals, we do not have to undo all the changes we made along the way.
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The trigonometric identity 1 + tan? 6 = sec? § suggest the inverse substitution

r =tanf, dr =sec?6 db.



Here the limits of integration become 0 = tanwu or uw = 0, and 1 = tanwu or u = 7/4, so
that the definite integral becomes
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With the power of secant being odd, there is no trigonometric identity that will help us
here.

Instead we opt for an integration by parts approach: with
u=secl, dv=sec’0df, du=sechtanf df, v = tan,

the definite integral becomes
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Combining the two integrals involving the cube of secant gives
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Along the way, we learned that

+C,
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from using integration by parts and

/sec@ df = In|sech + tand| + C.



