
Math 113 Lecture #14
§7.7: Approximate Integration, Part I

There are two main situations in which evaluating a definite integral by the Fundamental
Theorem of Calculus (i.e., finding an antiderivate) is impossible.

The first is when the antiderivative is not a “nice” function, like for∫ 1

0

ex
2

dx.

The second situation is when the function has no known formula, and a sampling of
values of the function have been determined by measurements.

In both case, we need to find approximations of the definite integrals, and this is done
by numerical algorithms.

Any Riemann sum can be used as an approximation for a definite integral.

This is of course contingent on the ASSUMPTION that the function being integrated is
integrable.

Most functions we would be interested in integrating satisfy this assumption.

The Left Endpoint, Right Endpoint, and Midpoint Rules (Again). Of the
Riemann sums used for approximate integration, the left, right, and midpoint rules are
the most common.

Let f be integrable on [a, b].

For an positive integer n, we let ∆x = (b − a)/n and divide [a, b] into subintervals of
equal length with endpoints xi = a + i∆x.

The left endpoint approximation and its error to

∫ b

a

f(x) dx are

Ln ≈
n∑

i=1

f(xi−1)∆x, EL =

∫ b

a

f(x)dx− Ln,

the right endpoint approximation and its error are

Rn ≈
n∑

i=1

f(xi)∆x, ER =

∫ b

a

f(x)dx−Rn

and for x̄i = (xi−1 + xi)/2, the midpoint approximation and its error are

Mn ≈
n∑

i=1

f(x̄i)∆x, EM =

∫ b

a

f(x)dx−Mn.

Example 1. Let us investigate these approximations and their errors for∫ 1

0

xex dx =

[
xex − ex

]1
0

= 1.

We will do this for n = 5, 10, 20.



We have arranged the “data” to six digits in the following table.

n Ln EL Rn ER Mn EM

5 0.742943 0.257057 1.28660 -.286600 0.992621 0.007379
10 0.867782 0.132218 1.13961 -.139610 0.998152 0.001848
20 0.932967 0.067033 1.06888 -0.06888 0.999538 0.000462

By far the midpoint approximation is the best of these three.

Why would the midpoint approximation be better than the left endpoint and the right
endpoint approximations?

This can be answered by considering the typical graph of f on the interval [xi−1, xi].
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The function f(x) = xex is increasing on [0, 1], so that the left endpoint approxima-
tion under estimates the integral, the right endpoint approximation over estimates the
integral.

But the midpoint approximation gives a better estimate of the integral.

Error Estimate for Midpoint Approximation Through advanced numerical analy-
sis, we can obtain an estimate of the error of the midpoint approximation.

We assume that f is twice differentiable on an open interval containing [a, b] and that
there is a positive constant K for which

|f ′′(x)| ≤ K for all x in [a, b].

Then we have

|EM | ≤
K(b− a)3

24n2
.

Notice that as we increase n the midpoint approximation gets closer to the actual value
of the integral.

And notice further that the error estimate does not require the value of integral!

All we need to know up front is the conditions on the second derivative of the function
we want to integrate.



We can choose the number n before computing the midpoint approximation to get the
midpoint approximation as close as we want to the actual value of the integral.

Example 1 Continued. What value of n gives a midpoint approximation of∫ 1

0

xex dx

that is within 0.0001 of the actual value?

To use the error estimate we need to know

f ′′(x) =
d

dx

(
xex + ex

)
= xex + 2ex.

The maximum value K of the increasing f ′′ is obtained at x = b:

K = e + 2e = 3e.

Plugging this into the error estimate for the midpoint approximation gives an inequality
in n:

|EM | ≤
3e(1− 0)3

24n2
=

3e

24n2
< 0.0001.

Solving for n gives

n ≥

√
3e

24(0.0001)
≈ 58.2911.

So we need at least n = 59. Indeed,

M59 = 0.999947 and EM = 0.000053.

The Trapezoidal Rule. Averaging the left endpoint and the right endpoint approxi-
mations results in the trapezoidal rule for approximation:

Tn =
Ln + Rn

2

=
1

2

[
n∑

i=1

f(xi−1)∆x +
n∑

i=1

f(xi)∆x

]
=

∆x

2
[f(x0) + f(x1) + · · ·+ f(xn−1) + f(x1) + f(x2) + · · ·+ f(xn)]

=
∆x

2
[f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)] .

Geometrically, the trapezoidal approximation adds the areas of the trapezoids over the
subintervals, each of whose tops are the straight line from the point (xi−1, f(xi−1)) on
the graph to the point (xi, f(xi)) on the graph.

Can you visualize this?



The error of the trapezoidal rule from the actual integral is

ET =

∫ b

a

f(x) dx− Tn.

If f ′′(x) exists on an open interval containing [a, b] and there is a positive constant K
such that

|f ′′(x)| ≤ K for all x in [a, b],

then we have the error estimate for the trapezoidal rule:

|ET | ≤
K(b− a)3

12n2
.

In comparison the trapezoidal approximation is not as good as the midpoint approxima-
tion.

Example 1 Continued (Again). Here are the midpoint and trapezoidal approxima-
tions and their errors for ∫ 1

0

xex dx = 1.

n Mn EM Tn ET

5 0.992621 0.007379 1.01477 -0.01477
10 0.998152 0.001848 1.00370 -0.00369
20 0.999538 0.000462 1.00092 -0.00092

To get a trapezoidal approximation that is within 0.0001 of the actual integral requires
that n satisfy

|ET | ≤
3e

12n2
≤ 0.0001 ⇒ n ≥ 82.35.

So we need as least n = 83. Indeed,

T83 = 1.00005 and ET = −0.00005.


