
Math 113 Lecture #20
§8.5: Probability

The lifetime of a randomly chosen battery of a given type is a continuous random variable
X: the lifetime X is a real number that ranges over an interval of real numbers.

The probability that the lifetime of such a battery is at least 1000 hours but not more
than 2000 hours is denoted by

P (1000 ≤ X ≤ 2000).

The probability that the lifetime of a battery is at least 500 hours is denoted by

P (X ≥ 500).

The probability that the lifetime of a battery is no more than 1500 hours is denoted by

P (X ≤ 1500).

Each of these probabilities is a number between 0 and 1.

How do we associate a number between 0 and 1 to a given probability?

Each continuous random variable X has a nonnegative probability density function
f(x) associated with it.

The probability that X lies between two values a and b is given by integration:

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx.

The probability that a continuous random variable is a real number is 1, which means
that

P (−∞ < X <∞) =

∫ ∞
−∞

f(x) dx = 1.

Example. Is the nonnegative function f(x) = xe−x for x ≥ 0 and f(x) = 0 for x < 0,
a probability density function?

Here is the graph of f(x).



To determine if it is or is not, we compute the value of the hopefully convergent improper
integral to see if it is 1:∫ ∞

−∞
f(x) =

∫ ∞
0

xe−xdx

= lim
A→∞

∫ A

0

xe−xdx

= lim
A→∞

[
− xe−x − e−x

]A
0

= lim
A→∞

[
− Ae−A − e−A + 1

]
= 1.

Thus f(x) is a probability density function, and we can use it to compute probabilities.

The probability that a continuous random variable X with probability density function
X has a value between 1 and 2 is

P (1 ≤ X ≤ 2) =

∫ 2

1

xe−xdx

=
[
− xe−x − e−x

]2
1

= −2e−2 − e−2 + e−1 + e−1

≈ 0.3297530327

There is an approximately 33% change that the value of X is between 1 and 2.

Suppose you are waiting for a company to answer your phone call.

How long can you expect to wait?

Let f(t) be the probability density function where t is time measured in minutes.

For a sample of N people who have called, we can assume that none will wait more than
60 minutes.

On a small subinterval [ti−1, ti] of length ∆t of [0, 60] the probability that someone’s call
gets answers is approximately f(t̄i)∆t for some t̄i ∈ [ti−1, ti].

Of the N people who have called, we expect that during [ti−1, ti] the number of calls that
will be answered is approximately Nf(t̄i)∆t, and the time they each waited is about t̄i.

So the total of the waiting times over [0, 60] is

n∑
i=1

Nt̄if(t̄i)∆t.

Then the average waiting time is

1

N

n∑
i=1

Nt̄if(t̄i)∆t =
n∑

i=1

t̄if(t̄i)∆t.



Recognizing this as a Riemann sum for the function tf(t), we obtain in the limit that
the average waiting time or mean is ∫ 60

0

tf(t) dt.

Passing to an improper integral we define the mean of a probability density function
f(t) to be

µ =

∫ ∞
−∞

tf(t) dt.

Another measure for a probability density function is its median, the number m that
satisfies ∫ ∞

m

f(x)dx =
1

2
.

Unlike the mean, finding the median may involve a numerical approximation for the value
of m.

Example. An exponentially decreasing probability density function is commonly used
to model wait times or equipment failure times.

For each c > 0 an exponentially decreasing probability density function is

f(x) =

{
ce−cx if x ≥ 0,

0 if x < 0,
.

Here is the graph of f(x) for c = 2.

For arbitrary c > 0, the mean of f(x) is

µ =

∫ ∞
−∞

xf(x) dx =

∫ ∞
0

cxe−cxdx

= lim
A→∞

∫ A

0

cxe−cxdx = lim
A→∞

[
−xe−cx − e−cx

c

]A
0

= lim
A→∞

[
−Ae−cA − e−cA

c
+

1

c

]
=

1

c
.



Thus the average waiting time is 1/c.

The median m of f(x) satisfies

1

2
=

∫ ∞
m

ce−cxdx = lim
A→∞

[
−e−cx

]A
m

= lim
A→∞

[
−e−cA + e−cm

]
= e−cm.

We can solve this for

m =
ln 2

c
.

For c = 2 the median is m ≈ 0.346 which is different than the mean of 0.5.

Normal Distributions. Many continuous random variables X, e.g. scores on exams,
have a normal probability density distribution which is given by

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
where µ is the mean of f(x) and σ is the standard deviation that measures how spread
out the values of X.

The smaller the value of σ the more concentrated the probability density is near the
mean, and the larger the value of σ the less concentrated the probability density is near
the mean.

Here is a “curve” for an exam with a mean of 70 and a standard deviation of 12.

Computing probability with a normal distribution requires numerical integration to ap-
proximate the integrals.

For a normal distribution with mean 70 and standard deviation of 12, the probability
that a student gets an exam score of between 70 and 90 is∫ 90

70

1

12
√

2π
exp

(
−(x− 70)2

2(122)

)
dx ≈ 0.4522096478.



For the same normal curve, the probability that a student gets an exam score of at least
80 is ∫ ∞

80

1

12
√

2π
exp

(
−(x− 70)2

2(122)

)
dx ≈

∫ 120

80

1

12
√

2π
exp

(
−(x− 70)2

2(122)

)
dx

≈ 0.2023129267.

Why could we replace ∞ with 120? Because for x > 120 there isn’t much probability, or
the area under the curve over x > 120 is very very small, and can safely be ignored.


