
Math 113 Lecture #25
§11.1: Sequences

You have been using sequences for some time. Where? With Riemann sums.

For a continuous f and each positive integer n, the Riemann sum

an =
n∑

i=1

f(x∗i )∆x

gives an approximation of the definite integral∫ b

a

f(x)dx.

The sequence of numbers a1, a2, a3, etc. approaches or converges to the value of the
definite integral as n→∞.

We will explore in Chapter 11 this fundamental notion of a convergent sequence of num-
bers.

This idea of approximating an exact number through a convergent sequence of numbers
is profound.

To illustrate, the irrational number π is the limit of the sequence of rational numbers 3,
3.1, 3.14, etc.

But how do we get the exact value of π and not just an approximation?

We get the exact value of π through a sequence of numbers that converges to it.

Convergence and Divergence of Sequences. A sequence is a list of numbers
given in a definite order:

a1, a2, . . . , an, . . . .

Alternatively, a sequence is a function from the positive integers to the reals, i.e., for
each positive integer n there is associated a number an.

We say that a1 is the first term of the sequence, a2 the second term, and an is the nth

term.

Notational we write a sequence as

{an} or {an}∞n=1.

Sometimes there is a simple function defining the terms of a sequence such as

an =
(−1)n ln(n+ 1)

n!
.

At other times there is no simple function defining the terms of a sequence such as

2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, . . . .



Do you recognize the digits in this sequence?

The notion of convergence of a sequence is about where the terms in the sequence are
going.

For example, the terms in sequence an = n/(n+ 1) are approaching 1 as n→∞.

We have a precise way of encoding what we mean by “the terms of the sequence approach
a number.”

Definitions. A sequence {an} has a limit L and we write

lim
n→∞

an = L, or an → L as n→∞,

if for every real ε > 0 there is a corresponding positive integer N such that

|an − L| < ε for all n ≥ N.

In other words, no matter how close we focus in on L (i.e., the choice of ε), the terms in
the sequence eventually come into and stay in our view (i.e., an for all n ≥ N).

We say the sequence {an} converges (or is convergent) if it has a limit, and otherwise
say it diverges (or is divergent).

If the terms of a sequence are defined by a “nice” function, then there is a simple way to
check for convergence.

Theorem. Suppose f is defined on [1,∞). If an = f(n) for all n ≥ 1, and

lim
x→∞

f(x) = L,

then {an} converges, and limn→∞ an = L.

Now there are lots of way a sequence can diverge. Here is one way.

Definition. The symbolic phrase

lim
n→∞

an =∞

means that for every positive integer M there is an integer N such that an ≥M whenever
n ≤ N .

There is a similar understanding of what its means for limn→∞ an = −∞.

Example 1. The sequence an = e−1/n converges to 1 as n → ∞, while the sequence
bn = lnn diverges to ∞ as n→∞.

Limit Laws for Convergent Sequences. When it comes to finding the limit of a
convergent sequence, it is sometimes easier to split the sequence into pieces that con-
verge, and find the limits of these convergent pieces to compute the limit of the original
convergent sequence.



Here is a list of Limit Laws that help in doing this. If {an} and {bn} are convergent
sequences, and c and p are constants with p > 0, then

lim
n→∞

(
can ± bn

)
= c lim

n→∞
an + lim

n→∞
bn,

lim
n→∞

anbn =
(

lim
n→∞

an

)(
lim
n→∞

bn

)
,

lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
if lim

n→∞
bn 6= 0,

lim
n→∞

(
an
)p

=
(

lim
n→∞

an

)p
if an ≥ 0.

Example 2. Here is an illustration of the Limit Laws:

lim
n→∞

√
3 + 2n2

8n2 + n
=

√
lim
n→∞

3 + 2n2

8n2 + n

=

√
lim
n→∞

3/n2 + 2

8 + 1/n

=

√√√√ lim
n→∞

3/n2 + 2

8 + lim
n→∞

1/n

=

√
2

8
=

1

2
.

Theorems about Convergence Sequences. Sometimes the limit of a convergence
sequence is not easy to find, but it can be squeezed in between two convergent sequences
whose limits are easy to find.

Squeeze Theorem. If an ≤ bn ≤ cn and limn→∞ an = limn→∞ cn = L, then

lim
n→∞

bn = L.

Another useful theorem about convergent sequences is the following.

Theorem. If limn→∞ |an| = 0, then limn→∞ an = 0.

Proof. Suppose limn→∞ |an| = 0. Then by a Limit Law,

lim
n→∞

(
− |an|

)
= 0.

Observe that −|an| ≤ an ≤ |an| for all n. Since the limit of the outer two sequences are
both 0, the Squeeze Theorem gives the result. �

Another useful theorem for convergence sequences extends the last of the Limit Laws to
any continuous function.



Theorem. If limn→∞ an = L and a function f is continuous at L, then

lim
n→∞

f(an) = f(L).

Example 3. Find the limit of

an = cos

(
n!

nn

)
.

By the last Theorem we first investigate the sequence

n!

nn
=

1 · 2 · 3 · · · n
n · n · n · · · n

=
1

n

(
2 · 3 · · · n
n · n · · · n

)
≤ 1

n
.

Since 0 ≤ n!/nn ≤ 1/n, and the limit of the first and last terms here are 0, the Squeeze
Theorem gives

lim
n→∞

n!

nn
= 0.

The limit of {an} is therefore 1.

Boundedness and Monotonicity of Sequences. A sequence {an} is increasing if

an < an+1 for all n ≥ 1,

is decreasing if
an > an+1 for all n ≥ 1,

is bounded above if there is a number M such that

an ≤M for all n ≥ 1,

and is bounded below if there is a number m such that

m ≤ an for all n ≥ 1.

A increasing or decreasing sequence is also called a monotonic sequence.

A sequence that is bounded above and bounded below is called bounded.

Monotonic Sequence Theorem. Every bounded, monotonic sequence converges.

This Theorem is a consequence of the Completeness Axiom for the real numbers R which
expresses the belief that there are no holes or gaps in the real numbers.

An upper bound for a nonempty set S of real numbers is a real number M such that

s ≤M for all s ∈ S.

A least upper bound of S is a real number L such that L is an upper bound for S and
for any upper bound M of S we have L ≤M .

The Completeness Axiom states that every nonempty set of real numbers S that has
an upper bound has a least upper bound.

Much of Calculus is a consequence of this fundamental belief for the real numbers.


