Math 113 Lecture #25
§11.1: Sequences

You have been using sequences for some time. Where? With Riemann sums.

For a continuous f and each positive integer n, the Riemann sum
n
an =Y f(z})Ax
i=1

gives an approximation of the definite integral

/a b f(z)da.

The sequence of numbers aq, as, as, etc. approaches or converges to the value of the
definite integral as n — oc.

We will explore in Chapter 11 this fundamental notion of a convergent sequence of num-
bers.

This idea of approximating an exact number through a convergent sequence of numbers
is profound.

To illustrate, the irrational number 7 is the limit of the sequence of rational numbers 3,
3.1, 3.14, etc.

But how do we get the exact value of 7 and not just an approximation?
We get the exact value of 7 through a sequence of numbers that converges to it.

Convergence and Divergence of Sequences. A sequence is a list of numbers
given in a definite order:
A1,09,y...,Qp,....

Alternatively, a sequence is a function from the positive integers to the reals, i.e., for
each positive integer n there is associated a number a,,.

We say that a; is the first term of the sequence, as the second term, and a,, is the n'®
term.

Notational we write a sequence as

{an} or {an}n’;.
Sometimes there is a simple function defining the terms of a sequence such as

(=1)"In(n +1)
n! )

Ay =

At other times there is no simple function defining the terms of a sequence such as

2,7,1,8,2,8,1,8,2,8,4,5,....



Do you recognize the digits in this sequence?

The notion of convergence of a sequence is about where the terms in the sequence are
going.
For example, the terms in sequence a, = n/(n + 1) are approaching 1 as n — oo.

We have a precise way of encoding what we mean by “the terms of the sequence approach
a number.”

Definitions. A sequence {a,} has a limit L and we write

lim a, = L, or a, — L as n — 00,
n—oo

if for every real € > 0 there is a corresponding positive integer N such that
la, — L| < e for all n > N.
In other words, no matter how close we focus in on L (i.e., the choice of €), the terms in

the sequence eventually come into and stay in our view (i.e., a, for all n > N).

We say the sequence {a,} converges (or is convergent) if it has a limit, and otherwise
say it diverges (or is divergent).

If the terms of a sequence are defined by a “nice” function, then there is a simple way to
check for convergence.

Theorem. Suppose [ is defined on [1,00). If a,, = f(n) for all n > 1, and

lim f(x) =L,

T—00

then {a,} converges, and lim,, ., a, = L.
Now there are lots of way a sequence can diverge. Here is one way.

Definition. The symbolic phrase

lim a, = oo

n—oo
means that for every positive integer M there is an integer N such that a,, > M whenever
n <N.

There is a similar understanding of what its means for lim,, ., a, = —o0.

—1/n

Example 1. The sequence a,, = e converges to 1 as n — oo, while the sequence

b, = Inn diverges to oo as n — oo.

Limit Laws for Convergent Sequences. When it comes to finding the limit of a
convergent sequence, it is sometimes easier to split the sequence into pieces that con-
verge, and find the limits of these convergent pieces to compute the limit of the original
convergent sequence.



Here is a list of Limit Laws that help in doing this. If {a,} and {b,} are convergent
sequences, and ¢ and p are constants with p > 0, then

lim (can + bn) =c¢ lim a, + lim b,,

n—00 n—00 n—00
lim a,b, = <lim an> (lim bn> )
n—00 n—00 n—o00

a lim a,
ARG, T T g, R 7O

n—oo
P

lim (an)p = (lim an> if a,, > 0.
n—oo n—o0

Example 2. Here is an illustration of the Limit Laws:

. 3+ 2n2 . 3+ 2n?
hm —_— = hm P e—
n—00 8n?2 +n n—oo 8n? +n

. 3/n?42
= hm e ——

lim 3/n%+ 2

n—0o0

8+ lim 1/n

n—o0

2 1

8 2

Theorems about Convergence Sequences. Sometimes the limit of a convergence
sequence is not easy to find, but it can be squeezed in between two convergent sequences
whose limits are easy to find.

Squeeze Theorem. If a, < b, < ¢, and lim,,_,, a,, = lim,,_,, ¢, = L, then

lim b, = L.

n—oo

Another useful theorem about convergent sequences is the following.
Theorem. If lim,_,, |a,| = 0, then lim,,_,,, a,, = 0.

Proof. Suppose lim,,_, |a,| = 0. Then by a Limit Law,

lim (- |a,|) = 0.

n—oo

Observe that —|a,| < a, < |a,| for all n. Since the limit of the outer two sequences are
both 0, the Squeeze Theorem gives the result. O]

Another useful theorem for convergence sequences extends the last of the Limit Laws to
any continuous function.



Theorem. If lim, .., a, = L and a function f is continuous at L, then

7}1_{20 f(an) = f(L)

n!
a, = COS )

By the last Theorem we first investigate the sequence

n! 1-2-3---n 1(2-3---n) 1
n

Example 3. Find the limit of

nm n-n-m--n n n-mn---mn

Since 0 < n!/n™ < 1/n, and the limit of the first and last terms here are 0, the Squeeze
Theorem gives

The limit of {a,} is therefore 1.

Boundedness and Monotonicity of Sequences. A sequence {a,} is increasing if
ap < Qpyq foralln > 1,

is decreasing if
ap > apyq foralln > 1,

is bounded above if there is a number M such that
a, <M foralln > 1,
and is bounded below if there is a number m such that
m < a, for all n > 1.

A increasing or decreasing sequence is also called a monotonic sequence.
A sequence that is bounded above and bounded below is called bounded.
Monotonic Sequence Theorem. Every bounded, monotonic sequence converges.

This Theorem is a consequence of the Completeness Axiom for the real numbers R which
expresses the belief that there are no holes or gaps in the real numbers.

An upper bound for a nonempty set S of real numbers is a real number M such that

s< M forall seS.

A least upper bound of S is a real number L such that L is an upper bound for .S and
for any upper bound M of S we have L < M.

The Completeness Axiom states that every nonempty set of real numbers S that has
an upper bound has a least upper bound.

Much of Calculus is a consequence of this fundamental belief for the real numbers.



