
Math 113 Lecture #26
§11.2: Series

Partial Sums and Series. It is easy to add a finite list of numbers.

But what about adding an infinite list of numbers together?

Consider the list of infinitely many numbers determined by a sequence {ai}.
Adding this infinite list of numbers gives an infinite series (or series for short),

a1 + a2 + a3 + · · ·,

which we denote by
∞∑
i=1

ai or
∑

ai.

What do we mean by adding an infinite list of numbers together?

We approach this question by using what we know, and that is that we know how to add
a finite list of numbers.

The nth-partial sum of a series is the addition of a finite list of numbers from the
sequence, namely

sn =
n∑

i=1

ai.

Example 1. What is the nth-partial sum of

∞∑
i=1

i2?

Well it is

sn =
n∑

i=1

i2 = 12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

The sequence of partial sums {sn} diverges to ∞ as n→∞.

Example 2. What is the nth-partial sum of

n∑
i=1

1

2i
?

It is

sn =
n∑

i=1

1

2i
=

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
= 1− 1

2n
.

The sequence of partial sums converges to 1 as n→∞.



Definition. A series
∞∑
i=1

ai is called convergent if its sequence of partial sums sn is

convergent, and we write
∞∑
i=1

ai = lim
n→∞

sn.

Otherwise the series is called divergent.

Geometric Series. A common series used is the geometric series

a + ar + ar2 + · · ·+ ari−1 + · · · =
∞∑
i=1

ari−1,

where a is nonzero constant, and r a constant.

Let us see if we can determine when the geometric series is convergent (and what it
converges to) or divergent.

The way we make this determination is through the partial sums:

sn =
n∑

i=1

ari−1 = a + ar + ar2 + · · ·+ arn−1.

Multiplying this partial sum through by r gives something that looks like the next partial
sum:

rsn = r
n∑

i=1

ari−1 = ar + ar2 + ar3 + · · ·+ arn.

Combining these two finite sums by subtraction gives

sn − rsn = a− arn.

Solving for the partial sum when r 6= 1 gives

sn =
a(1− rn)

1− r
.

The term 1 − rn → 1 as n → ∞ when −1 < r < 1, which means that the partial sums
converge:

∞∑
i=1

ari−1 = lim
n→∞

sn = lim
n→∞

a(1− rn)

1− r
=

a

1− r
.

For r = 1, the geometric series diverges because a 6= 0:

sn =
n∑

i=1

a1i−1 = a + a + · · ·+ a = na→ ±∞.

For r = −1, the geometric series also diverges:

sn =
n∑

i=1

a(−1)i−1 =

{
0 n even,

a n odd.

Finally for |r| > 1, the geometric series diverges because it partial sums diverge.



Example 3. If convergent, find the sum of the series

∞∑
i=1

6(0.9)i−1.

We recognize this as a geometric series with a = 6 and r = 0.9, and so it is convergent
and converges to

a

1− r
=

6

1− 0.9
=

6

0.1
= 60.

Divergence Series. What do the terms an in a convergent series
∑

an do?

Once we know what this necessary condition of convergence is, we can use it to detect
divergence.

Theorem. If the series
∞∑
i=1

ai converges, then lim
n→∞

an = 0.

Proof. We know that the nth-partial sum of the convergent series is

sn = a1 + a2 + · · ·+ an−1 + an = sn−1 + an.

The difference of two consecutive partial sums is

sn − sn−1 = an.

Since we are assuming that the series converges, we are also assuming that the sequence
of partial sums converges:

s = lim
n→∞

sn.

On the other hand, we have the other sequence sn−1 of partial sums which converges to
the same thing:

s = lim
n→∞

sn−1.

We now use the Limit Law for a difference of convergent sequences:

lim
n→∞

an = lim
n→∞

(
sn − sn−1

)
= lim

n→∞
sn − lim

n→∞
sn−1 = s− s = 0.

Thus we have shown that the terms an in the series go to zero as n→∞. �

The contrapositive of this Theorem gives a test for divergence of a series.

Theorem. If limn→∞ an does not exist or if limn→∞ an 6= 0, then the series
∑

an diverges.

Example 4. The series
∑∞

i=1 21/n diverges because

lim
n→∞

21/n = 1 6= 0.

The converse of the first Theorem in this subsection is false: knowing that an → 0 as
n→∞ does NOT guarantee that

∑
an converges.



An example of this is the Harmonic series

∞∑
i=1

1

i
.

We consider the partial sums s2, s4, s8, etc., those of the form s2n .

s2 = 1 +
1

2
,

s4 = 1 +
1

2
+

1

3
+

1

4

> 1 +
1

2
+

1

4
+

1

4

= 1 +
1

2
+

1

2

= 1 +
2

2
,

s8 = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8

> 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8

= 1 +
1

2
+

1

2
+

1

2

= 1 +
3

2
.

We see a pattern here, namely that

s2n > 1 +
n

2
.

This says that the sequence of partial sums has terms in it that go to infinity, and so

lim
n→∞

sn does not exist.

Thus the Harmonic series diverges.

We will also show by an improper integral that the Harmonic series diverges.

Algebraic Rules for Convergence Series. Convergent series enjoy some of the
usual algebraic operations.

For convergent series
∑

an and
∑

bn and a constant c, we have that∑(
can ± bn

)
= c

∑
an ±

∑
bn.

Example 5. If convergent, find the value of

∞∑
i=1

(
3

i(i + 3)
+

1

7i−1

)
.



We consider each part of the series separately for convergence.

By partial fractions, the partial sums for the first part are

sn =
n∑

i=1

3

i(i + 3)

=
n∑

i=1

(
1

i
− 1

i + 3

)
=

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− 1

4
− 1

5
− · · · − 1

n
− 1

n + 1
− 1

n + 2
− 1

n + 3

)
=

(
1 +

1

2
+

1

3
− 1

n + 1
− 1

n + 2
− 1

n + 3

)
→
(

1 +
1

2
+

1

3

)
=

6 + 3 + 2

6

=
11

6
.

We used a telescoping sum technique to get the value of the sum.

The second part is a geometric series with a = 1 and r = 1/7, and so it converges too:
∞∑
i=1

1

7−1
=

1

1− 1/7
=

7

6
.

Putting it all together gives the sum of
∞∑
i=1

(
3

i(i + 3)
+

1

7i−1

)
=

11

6
+

7

6
= 3.

Example 6. A medication is administered to a patient at the same time every day.
Suppose Cn is the concentration (in mg/mL) of the medication in the patient’s blood-
stream after the injection on the nth day. Before the injection the next day, only 40% of
the medication remains in the patient’s bloodstream, and the daily injection raises the
concentration by 0.3 mg/mL.

We assume that C0 = 0, i.e., that before the first injection there in none of the medication
in the bloodstream.

On the (n + 1)th day, the concentration of the medication just before the injection is
0.4Cn, and after the injection it is

Cn+1 = 0.3 + 0.4Cn.

With this we calculate

C1 = 0.3 + 0.4(0) = 0.3,

C2 = 0.3 + 0.4(0.3) = 0.42,

C3 = 0.3 + 0.4(0.42) = 0.468.



Does the sequence (Cn) converge as n→∞? If so, to what?

And is (Cn) the sequence of partial sums for a series?

To see what is happening we reconsider the first few terms of (Cn):

C1 = 0.3 + 0.4(0) = 0.3,

C2 = 0.3 + 0.4C1 = 0.3 + 0.4(0.3) = 0.3 + 0.3(0.4),

C3 = 0.3 + 0.4C2 = 0.3 + 0.4(0.3 + 0.3(0.4)) = 0.3 + 0.3(0.4) + 0.3(0.4)2.

The pattern that appears here suggests that

Cn = 0.3 + 0.3(0.4) + 0.3(0.4)2 + · · ·+ 0.3(0.4)n−1.

Thus (Cn) is the sequence of partial sums for the geometric series

∞∑
n=1

0.3(0.4)n−1.

We have a formula for the value of Cn, namely

Cn =
a(1− rn)

1− r
=

0.3(1− (0.4)n)

1− 0.4
=

1− (0.4)n

2
.

The sequence (Cn) converges to

lim
n→∞

Cn =
1

2
.


