
Math 113 Lecture #27
§11.3: The Integral Test and Estimates of Sums

The Integral Test. So far, we have had to compute the limit of the sequence of the
partial sums to determine if a series converges or diverges:

∞∑
i=1

ai = lim
n→∞

sn.

We now develop a powerful tool for detecting convergence or divergence of series whose
terms are positive and decreasing, i.e., we assume

an ≥ 0 and an+1 < an for all n.

Theorem. Suppose there is a continuous, positive, decreasing function f defined on
[1,∞) such that ai = f(i). The series

∞∑
i=1

ai

converges if and only if the improper integral∫ ∞
1

f(t) dt

converges.

Remark. Since this is an “if and only if” theorem, we can replace both occurrences of
converges with diverges and it remains valid.

Proof. Suppose that the improper integral is convergent.

We will compare the area under the graph of f with the terms in the series. Here is the
graph of a typical f .
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The rectangle with base between i− 1 and i and height f(i) has area f(i) = ai.

So between i = 1 and i = 2 we have a rectangle whose area is a2, between i = 2 and
i = 3 a rectangle whose area is a3, etc.

The addition of the area of these rectangles up to i = n is almost the nth-partial sum:

a2 + a3 + · · ·+ an = sn − a1.

Since each of the rectangles lies beneath the graph of f , we have

sn − a1 ≤
∫ n

1

f(t) dt.

Since f is a positive function, and the improper integral of f converges, we have

sn − a1 ≤
∫ n

1

f(t) dt ≤
∫ ∞
1

f(t) dt.

Solving the inequality for sn gives

sn ≤ a1 +

∫ ∞
1

f(t) dt.

The right hand side of this inequality is a constant that does not depend on n, and hence
is an upper bound for the sequence of partial sums.

Since an+1 = f(n + 1) > 0, the sequence of partial sums is increasing:

sn+1 = sn + an+1 > sn.

We apply the Monotonic Sequence Theorem to the partial sums to show that {sn} is a
convergent sequence.

Thus, the series is convergent.

Now suppose that the improper integral of f over [1,∞) is divergent.

We form a rectangle with base between i − 1 and i with height f(i − 1) whose area is
f(i− 1) = ai−1.

Since f is decreasing, the tops of these rectangles lie above the graph of f .

The sum of the area of these rectangles up to i = n is bounded below by the area under
the graph of f over [1, n]:∫ n

1

f(t) dt ≤ a1 + a2 + · · ·an−1 = sn−1.

Since f is positive, the only way for the improper integral of f over [1,∞) to diverge is
for it to go to infinity:

∞ =

∫ ∞
1

f(t) dt = lim
n→∞

∫ n

1

f(t) dt ≤ lim
n→∞

sn−1.

This means that the sequence of partial sums diverges, and so the series diverges. �.



Example 1. For what values of p do we have convergence for the p-series

∞∑
n=1

1

np
?

For p = 1 this is the Harmonic series, which we will show diverges by the Integral Test.

Since an = f(n) for f(t) = 1/tp, a continuous, positive, decreasing function, we apply
the integral test to check for convergence or divergence:

∫ ∞
1

f(t) dt = lim
A→∞

∫ A

1

1

tp
dt = lim

A→∞

lnA− ln 1 if p = 1,
1

(1− p)Ap−1 −
1

1− p
if p 6= 1.

The limit does not exist when p = 1 or p < 1, but does exist when p > 1.

So the p-series converges when p > 1 and diverges for p ≤ 1.

Estimate of Sums. For a convergence series, anyone of the partial sums is an approx-
imation to the value of the series since

sn → s =
∞∑
i=1

ai.

The remainder determines how good of an approximation any particular partial sum
is:

Rn = s− sn = an+1 + an+2 + an+3 + · · ·.

In other words, the sum of the “tail” of the terms in the series determines Rn.

Assuming that an = f(n) for a continuous, positive, decreasing function f defined on
[1,∞), we use rectangles like we constructed in the proof of the Integral Test to give the
following two inequalities that the remainder satisfies:

Rn = an+1 + an+2 + an+3 · ·· ≤
∫ ∞
n

f(t) dt,

Rn = an+1 + an+2 + an+3 · ·· ≥
∫ ∞
n+1

f(t) dt.

Combining these two inequalities gives the Remainder Estimate for the Integral
Test: ∫ ∞

n+1

f(t) dt ≤ Rn ≤
∫ ∞
n

f(t) dt.

We can substitute s− sn in these inequalities for Rn, and solving for s in the middle by
itself gives

sn +

∫ ∞
n+1

f(t) dt ≤
∞∑
i=1

ai ≤ sn +

∫ ∞
n

f(t) dt.

This second set of inequalities gives a better estimate of the value of the convergent series.



Example 2. We show how to use the remainder estimate for the integral test to find an
approximation as close as desired to the value of the convergent p-series

∞∑
i=1

1

n3
.

For this we need the value of two improper integrals:∫ ∞
n+1

1

t3
dt = lim

A→∞

[
−1

2t2

]A
n+1

=
1

2(n + 1)2
,∫ ∞

n

1

t3
dt = lim

A→∞

[
−1

2t2

]A
n

=
1

2n2
.

An estimate on the remainder for the partial sum s10 ≈ 1.197532 is

s− s10 = R10 ≤
∫ ∞
10

1

t3
dt =

1

2(10)2
=

1

200
= 0.005.

To get an a reminder that is smaller than 0.0005 requires that n satisfy

Rn ≤
∫ ∞
n

1

t3
dt =

1

2n2
= 0.0005,

that is, that
n ≥ 32.

Rather than computing s32, we apply the second set of inequalities derived above:

s10 +
1

2(11)2
= s10 +

∫ ∞
10+1

1

t3
dt ≤ s ≤ s10 +

∫ ∞
10

1

t3
dt = s10 +

1

200
.

This gives
1.201664 ≤ s ≤ 1.202532.

The midpoint of this interval in which s lies is at most half the length of the interval
away from the actual value of s.

Thus

s ≈ 1.201664 + 1.202532

2
= 1.2021

to within an error of
1.202532− 1.201664

2
= 0.000434.


