
Math 113 Lecture #28
§11.4: Comparison Tests

The Comparison Test. Oftentimes we can compare one series with another for which
the convergence or divergence of one is “easy” to determine, and from this infer the
convergence or divergence of the other.

This idea of comparison is a tool in addition to the Integral Test for convergence or
divergence.

Theorem. Suppose
∑

an and
∑

bn are series with positive terms.

(i) If
∑

bn is convergent and an ≤ bn for all n, then
∑

an is convergent.

(ii) If
∑

bn is divergent and an ≥ bn for all n, then
∑

an is divergent.

Proof. Suppose that
∑

bn is convergent and an ≤ bn for all n, and set

sn =
n∑

i=1

ai, tn =
n∑

i=1

bi, and t =
∞∑
i=1

bi.

Positivity of the terms in both series implies that {sn} and {tn} are increasing sequences.

The inequalities an ≤ bn implies that sn ≤ tn for all n.

Since tn → t as n→∞ (i.e.,
∑

bn converges) and {tn} is increasing, it follows that

sn ≤ t for all n.

So {sn} is an increasing bounded above sequence which therefore converges by the Mono-
tonic Sequence Theorem.

Now suppose that
∑

bn diverges and that an ≥ bn for all n.

Positivity of the bi’s implies that
∑

bn diverges to ∞, i.e., tn →∞.

The inequalities an ≥ bn now imply that sn ≥ tn for all n.

The divergence of tn to ∞ therefore gives the divergence of sn to ∞ as n→∞.

The series
∑

an is divergent. �

When applying the Comparison Test, we use series whose convergence or divergence is
known, such as the p-series and the geometric series.

Example 1. Determine whether or not the following series converges:

∞∑
n=1

n− 1

n2
√
n
.

We seek a series to compare with this, and we typically find this series by applying
inequalities to the terms of the series.

We use n− 1 < n for all n to do this:

n− 1

n2
√
n
≤ n

n2
√
n

=
1

n
√
n

=
1

n3/2
.



So we are comparing the original series with a p-series for p = 3/2.

Since p = 3/2 is bigger than 1,
∞∑
n=1

1

n3/2

converges, so that by the Comparison Test, so does the original series.

Example 2. Determine whether or not the following series converges:
∞∑
n=2

√
n

n− 1
.

Again we apply inequalities to the terms to get a comparison series: since n− 1 < n for
all n ≥ 2, then (n− 1)−1 > n−1 for all n ≥ 2, so that

√
n

n− 1
>

√
n

n
=

1√
n

=
1

n1/2
.

The p-series with p = 1/2 diverges, and so by the Comparison Test, the original series
diverges too.

The Limit Comparison Test. Here is another useful comparison type test that ties
the convergence or divergence of two series together using ratios.

Theorem. Suppose
∑

an and
∑

bn are series with positive terms. If

lim
n→∞

an
bn

exists and is a positive number, then both series converge or both series diverge.

Proof. Set
∞ > c = lim

n→∞

an
bn

> 0.

Choose positive numbers m and M such that m < c < M .

Because an/bn converges to c, there is an N such that for all n ≥ N , the following
inequalities hold:

m ≤ an
bn
≤M for all n ≥ N.

Since bn > 0 for all n, we can multiply these inequalities through by bn to get

mbn ≤ an ≤Mbn for all n ≥ N.

Now if
∑

bn converges, then so does
∑

Mbn = M
∑

bn, whence by the Comparsion Test,
the series

∑
an converges.

On the other hand, if
∑

an converges, then the Comparison Test shows that
∑

mbn =
m
∑

bn converges too, and with m > 0, the series
∑

bn converges.

Now if
∑

bn diverges, the so does
∑

mbn = m
∑

bn, and so by the Comparison Test, the
series

∑
an diverges.

On the other hand, if
∑

an diverges, then by the Comparison Test, the series
∑

Mbn =
M
∑

bn diverges too, and since 0 < M <∞, so does
∑

bn. �.



Example 3. Determine whether or not the following series converges:

∞∑
n=1

n2 − 5n

n3 + n + 1
=
∞∑
n=1

an.

We find the comparison series by eliminating what we think is extraneous stuff from the
an’s:

bn =
n2

n3
=

1

n
.

The series
∑

bn is a divergent p-series (p = 1), and

c = lim
n→∞

an
bn

= lim
n→∞

n2 − 5n

n3 + n + 1
1

n

= lim
n→∞

n3 − 5n2

n3 + n + 1

= 1.

Since 0 < c = 1 <∞, the Limit Comparison Test shows that
∑

an diverges.

Example 4. Determine whether or not the following series converges:

∞∑
n=1

(
1 +

1

n

)2

e−n =
∞∑
n=1

an.

We use the inequality (1 + 1/n)2 ≤ 4 for all n to find a comparison series:

∞∑
n=1

4e−n =
∞∑
n=1

bn.

This is the geometric series
∞∑
n=1

4

en
=
∞∑
n=1

4

e

(
1

e

)n−1

which converges since |1/e| < 1.

We now compute the limit of the ratios of an and bn:

c = lim
n→∞

an
bn

= lim
n→∞

1

4

(
1 +

1

n

)2

=
1

4
.

Since
∑

bn converges, the Limit Comparison Test shows that
∑

an converges.

Estimating Sums. If we have shown a series
∑

an converges by comparison with a
convergent series

∑
bn where 0 ≤ an ≤ bn, then we can estimate the error of approxi-

mating the series
∑

an with a partial sum in terms of the remainders.



The remainder for s =
∑

an is

Rn = s− sn = an+1 + an+2 + an+3 + · · · .

The remainder for t =
∑

bn is

Tn = t− tn = bn+1 + bn+2 + bn+3 + · · · .

Since an ≤ bn we have that
Rn ≤ Tn.

If
∑

bn is a convergent geometric series, then we can compute explicitly Tn.

If
∑

bn is a convergent p-series, we can use the Remainder Estimate for the Integral Test
to estimate Tn.

Example 5. The series

s =
∞∑
n=1

1

n3 + 1

converges by comparison with the convergent p-series

∞∑
n=1

1

n3
.

An estimate on the remainder for this convergent p-series is given by

Tn ≤
∫ ∞
n

1

x3
dx =

1

2n2
.

Thus we have

Rn ≤ Tn ≤
1

2n2
.

For n = 100, we have

R100 ≤
1

2(100)2
= 0.00005.

The partial sum
s100 = 0.6864538

is within 0.00005 of the actual value of s.


