
Math 113 Lecture #29
§11.5: Alternating Series

The Alternating Series Test. After defining what is means for a series to converge,
we have mainly focused on developing tools to determine convergence or divergence for
series with positive terms.

We now turn our attention to developing a tool to deal with a series whose terms alternate
in sign, such as

∞∑
n=1

(−1)n−1

n
.

Theorem. If
∑

bn is a series with positive terms for which

(i) bn+1 ≤ bn for all n, and

(ii) limn→∞ bn = 0,

then the alternating series

∞∑
n=1

(−1)n+1bn = b1 − b2 + b3 − b4 + · · ·

converges.

Remark. What is remarkable about this Theorem is that NO assumption about the
convergence or divergence of

∑
bn is made. It could be that

∑
bn diverges, and the

conclusion of this Theorem stills holds.

Remark. Let us consider what the alternating series in this Theorem is doing before
proving the Theorem.

The partial sums are

s1 = b1, s2 = b1 − b2, s3 = b1 − b2 + b3, s4 = b1 − b2 + b3 − b4, etc.

The assumptions that bn ≥ 0 and bn+1 ≤ bn for all n implies that

s1 ≥ s2, s2 ≤ s3, s3 ≥ s4, etc.

More importantly,

s2 ≤ s4 ≤ s6 ≤ · · · and s1 ≥ s3 ≥ s5 ≥ · · ·.

The even partial sums are an nondecreasing sequence (i.e., can go up or stay the same,
but never go down), and the odd partial sums are a nonincreasing sequence (i.e., can go
down or stay the same, but never go up).

It seems like the even partitions and the odd partial sums ought to converge to something
in between them.



Proof of the Alternating Series Test. We more carefully show that the even partial sums
are a nondecreasing sequence that is bounded above:

s2 = b1 − b2 ≥ 0 since b2 ≤ b1,

s4 = s2 + (b3 − b4) ≥ s2 since b4 ≤ b3,

s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2 since b2n ≤ b2n−1.

Thus we have
0 ≤ s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ · · ·

where
s2n = b1 − (b2 − b3)− · · · − (b2n−2 − b2n−1)− b2n.

Since bn+1 ≤ bn for all n, every term of the form b2n−2− b2n−1 is nonnegative, i.e., bigger
or equal to 0.

This gives us an upper bound the even partial sums:

s2n ≤ b1.

By the “obvious” variation of the Monotonic Sequence Theorem, the bounded above
nondecreasing sequence {s2n} converges to say s.

So all we have to do now is check the sequence of odd partial sums converges to s too:

lim
n→∞

s2n+1 = lim
n→∞

(
s2n + bn+1

)
= lim

n→∞
s2n + lim

n→∞
bn+1

= s + 0

= s,

where we have used the assumption that bn → 0 as n→∞. �

Example 1. Test the following alternating series for convergence:

∞∑
n=1

(−1)n−1 lnn

n
.

We need to check the two conditions on the terms bn = (lnn)/n.

We show that {bn} is eventually decreasing using calculus:

f(x) =
lnx

x
⇒ f ′(x) =

1− lnx

x2
≤ 0 for x ≥ e.

Thus the function f(x) is nonincreasing once x is bigger than e.

Since bn = f(n), the sequence {bn} is nonincreasing, i.e., bn+1 ≤ bn, for all n ≥ 3.

We compute the limit of {bn} by computing the limit of f(x) as x→∞ by L’Hospital’s
Rule:

lim
x→∞

lnx

x
= lim

x→∞

1/x

1
= 0.

Thus {bn} converges to 0, and the Alternating Series Test shows that the series converges.



The Alternating Series Estimate. The alternating nature of a convergence alter-
nating series lends itself to an easy estimate of the remainder of any partial sum sn from
the value s of the convergence series:

Rn = s− sn.

Theorem. Let {bn} be a sequence for which bn+1 ≤ bn and limn→∞ bn = 0. If s =∑
(−1)n−1bn, then

|Rn| ≤ bn+1.

Proof. We know from the proof of the Alternating Series Test that the value s lies
between any two consecutive partial sums:

sn ≤ s ≤ sn+1 for n even, or sn+1 ≤ s ≤ sn for n odd.

From these inequalities we get some more:

0 ≤ s− sn ≤ sn+1 − sn for even n, and sn+1 − sn ≤ s− sn ≤ 0 for odd n.

Interpreting these as absolute values we get

|s− sn| ≤ |sn+1 − sn| for even n and |s− sn| ≤ |sn+1 − sn| for odd n.

Thus we get for all n the inequalities

|s− sn| ≤ |sn+1 − sn|.

However sn+1 and sn differ by ±bn+1, so that |s− sn| ≤ bn+1. �

For convergent alternating series, estimating the error is relatively easy.

Example 2. The alternating series

∞∑
n=1

(−1)n

n5n
= −

∞∑
n=1

(−1)n−1

n5n

is convergent by the Alternating Series Test because bn = (n5n)−1 is nonincreasing and
has limit 0.

To get |Rn| smaller than 0.0001 requires that

bn+1 ≤ 0.0001.

This is an inequality not readily solved for n:

1

(n + 1)5n+1
≤ 0.0001.

But computing the left hand side on a calculator for n = 2, n = 3, and n = 4 gives

b2+1 ≈ 0.0026, b3+1 ≈ 0.0004, and b4+1 ≈ 0.000064 < 0.0001.

So the partial sum s4 is within 0.0001 of the actual value of the series.


