
Math 113 Lecture #31
§11.7: Strategy for Testing Series

Summary Review of Series and Convergence Tests. A series is an infinite sum

∞∑
n=1

an = a1 + a2 + a3 + · · ·.

The sequence of partial sums attached to a series is

sn =
n∑

i=1

ai = a1 + a2 + · · ·+ an.

A series is said to be convergent if its sequence of partial sums converges:

∞∑
n=1

an = lim
n→∞

sn.

Otherwise, the series is divergent, i.e., limn→∞ sn does not exist.

A series is absolutely convergent if

∞∑
n=1

|an| converges.

An absolutely convergent series is a convergent series.

A series is conditionally convergent if it converges but is not absolutely convergent.

Divergence Test. If limn→∞ an 6= 0 or does not exist, then
∑∞

n=1 an diverges.

Integral test. Suppose there is a continuous, positive, decreasing function f defined on
[1,∞) such that an = f(n). The series

∑∞
n=1 an converges if and only if∫ ∞

1

f(t) dt converges.

Remainder Estimate for the Integral Test. If s =
∑∞

n=1 an converges, then

sn +

∫ ∞
n+1

f(t) dt ≤ s ≤ sn +

∫ ∞
n

f(t) dt.

The midpoint of this interval in which s lives is another estimate of s, with an error no
bigger than half the length of the interval.

Comparison Tests. Suppose
∑

an and
∑

bn are series with positive terms. If
∑

bn
converges and an ≤ bn for all n, then

∑
an converges. If

∑
bn diverges and an ≥ bn for

all n, then
∑

an diverges.

Comparison Test: Estimating Sums. If s =
∑

an with positive terms converges by com-
parison with the convergent t =

∑
bn with positive terms, then the remainder Rn = s−sn

for the series
∑

an is bounded above the the remainder Tn = t− tn for the series
∑

bn.



Limit Comparison Test. Suppose
∑

an and
∑

bn are series with positive terms. If

c = lim
n→∞

an
bn

exists and is a positive number, then either
∑

an and
∑

bn both converge, or
∑

an and∑
bn both diverge.

If c exists and equals 0, then convergence of
∑

bn implies convergence of
∑

an.

If c =∞, then divergence of
∑

bn implies divergence of
∑

an.

Alternating Series Test. If
∑

bn is a series with positive terms such that bn+1 ≤ bn for
all n and limn→∞ bn = 0, then the alternating series

∑
(−1)n+1bn converges.

Clue when to use: the presence of (−1)n or (−1)n+1 in the terms.

Alternating Series Estimate. If s =
∑

(−1)n+1bn is a convergent alternating series, then

|s− sn| ≤ bn+1.

Ratio Test for Absolute Convergence. Suppose
∑

an has nonzero terms and set

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
If L < 1, then

∑
an is absolutely convergent. If L > 1 then

∑
an is divergent. If L = 1,

the Ratio Test fails.

Clue when to use: the presence of factorials in the terms.

Root Test for Absolute Convergence. Suppose
∑

an has nonzero terms and set

L = lim
n→∞

|an|1/n.

If L < 1, then
∑

an converges absolutely. If L > 1, then
∑

an diverges. If L = 1, then
the Root Test fails.

Clue when to use: the presence of nth powers in the terms.

Known Series. Here are series and their convergence or divergence you should know.

Geometric Series. For a nonzero constant a and a constant r, this is the series

∞∑
n=1

arn−1 = a + ar + ar2 + · · ·.

This series converges if and only if |r| < 1 and in this case there is a formula for its sum:

∞∑
n=1

arn−1 =
a

1− r
.



p-Series. For a constant p, this is the series

∞∑
n=1

1

np
.

This series converges if p > 1 and diverges if p ≤ 1. The Harmonic series is the p-series
with p = 1.

Telescoping Series. For a positive integer k and a function f defined on [1,∞), this is a
series of the from

∞∑
n=1

(
f(n)− f(n + k)

)
.

A telescoping series converges if limn→∞ f(n) = 0 because the limit of

sn = f(1) + f(2) + · · ·+ f(k) + · · · − f(n + 1)− f(n + 2)− · · · − f(n + k)

is
f(1) + f(2) + · · ·+ f(k)

which is the value of the convergent telescoping series.

Practice. The key to successfully determining if a series converges or diverges is practice,
practice, and more practice.

Here is a selection of series for which we will determine absolute convergence, conditional
convergence, or divergence. If a series is convergent, find either the value of the series or
a good estimate.

∞∑
n=1

1

n25n
,

∞∑
n=1

2

n2 + 2n
,

∞∑
n=1

1

n + 3n
,

∞∑
n=1

(2n + 1)n

n2n
,

∞∑
n=2

(−1)n+1

√
n− 1

,

∞∑
n=1

(−1)n
lnn√
n
,

∞∑
n=1

(n!)n

n4n
,

∞∑
n=1

(21/n − 1)n.


