
Math 113 Lecture #33
§11.9: Representations of Functions as Power Series

Finding Power Series Representations. We will see how to use the geometric series

1

1− x
=
∞∑
n=0

xn, |x| < 1,

to represent or express certain functions as a power series. At first this may seem a
strange thing to do to perfectly good functions.

Example 1. Represent by a power series the function

1

1 + x
.

To use the geometric series we need express the x in the form −x:

1

1 + x
=

1

1− (−x)
=
∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn = 1− x + x2 − x3 + · · ·.

The radius of convergence of this power series is | − x| < 1 which is the same as |x| < 1.

Example 2. Represent by a power series the function

x

2x2 + 1
.

Here we leave the numerator outside for a minute and rewrite the 2x2 term as −2x2:

x

2x2 + 1
= x

1

1− (−2x2)
= x

∞∑
n=0

(−2x2)n = x
∞∑
n=0

(−2)nx2n =
∞∑
n=0

(−2)nx2n+1.

Multiplying the series through by x is legitimate because it does not depend on n (think
of it as multiplying through by a constant).

The radius of convergence of this power series is | − 2x2| < 1, or |x| <
√

2/2.

Differentiation and Integration of Power Series. For a polynomial, we dif-
ferentiate and integrate term by term, and this principle also holds for infinite-degree
polynomials or power series.

Theorem. If the radius of convergence for f(x) =
∑∞

n=0 cn(x − a)n is R > 0 or R =
∞, then f(x) is differentiable and continuous on (a − R, a + R) (the open interval of
convergence), and

f ′(x) =
d

dx

∞∑
n=0

cn(x− a)n =
∞∑
n=0

d

dx
cn(x− a)n =

∞∑
n=0

ncn(x− a)n−1 =
∞∑
n=1

ncn(x− a)n−1,



and ∫
f(x) dx = C +

∫ ( ∞∑
n=0

cn(x− a)n

)
dx = C +

∞∑
n=0

∫
cn(x− a)n dx

= C +
∞∑
n=0

cn
(x− a)n+1

n + 1
,

where C is the arbitrary constant of integration. The radii of convergence of the differ-
entiated and integrated power series are both R.

Example 3. Find a power series representation for the function

x2

(1− 2x)2
.

We focus on the denominator first:

1

(1− 2x)2
=

1

2

d

dx

(
1

1− 2x

)
.

We can write the term being differentiated here in terms of a geometric series:

1

1− 2x
=
∞∑
n=0

(2x)n,

where the radius of convergence is |2x| < 1, i.e., |x| < 1/2.

To this point we have

1

(1− 2x)2
=

1

2

d

dx

∞∑
n=0

(2x)n =
1

2

∞∑
n=0

2n(2x)n−1 =
∞∑
n=1

n(2x)n−1, |x| < 1/2.

Now we bring back the numerator:

x2

(1− 2x)2
= x2

∞∑
n=1

n(2x)n−1 =
∞∑
n=1

n2n−1xn+1, |x| < 1/2.

Example 4. Use a power series to find∫
ln(1− t)

t
dt.

At first it appears that the integrand has a problem at t = 0, but by L’Hopital’s Rule,

lim
t→0

ln(1− t)

t
= lim

t→0

−1

1− t
= −1.

We focus on the numerator of the integrand first:

ln(1− t) = −
∫

1

1− t
dt = −

∫ ( ∞∑
n=0

tn

)
dt = C −

∞∑
n=0

tn+1

n + 1
, |t| < 1.



We can determine the value of C by evaluating ln(1− t) at say t = 0:

0 = ln(1− 0) = C −
∞∑
n=0

0n+1

n + 1
= C.

Reintroducing the denominator gives the integrand as a power series:

ln(1− t)

t
= −

∞∑
n=0

tn

n + 1
, |t| < 1.

Since a convergent power series is continuous on its open interval of convergence, notice
that

lim
t→0

ln(1− t)

t
= − lim

t→0

∞∑
n=0

tn

(n + 1)
= −

∞∑
n=0

0n

n + 1
= −1,

in exact agreement with the L’Hopital’s Rule calculation done above.

We now integrate term by term:∫
ln(1− t)

t
dt = C −

∞∑
n=0

tn+1

(n + 1)2
.

We can now use this antiderivative to evaluate definite integrals! That is,

∫ −1/4
−3/4

ln(1− t)

t
dt =

[
−
∞∑
n=0

tn+1

(n + 2)2

]−1/4
−3/4

= −
∞∑
n=0

(−1/4)n+1

(n + 1)2
+
∞∑
n=0

(−3/4)n+1

(n + 1)2
,

the difference of two convergent alternating series.


