Math 113 Lecture #33
§11.9: Representations of Functions as Power Series
Finding Power Series Representations. We will see how to use the geometric series
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to represent or express certain functions as a power series. At first this may seem a
strange thing to do to perfectly good functions.

Example 1. Represent by a power series the function
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To use the geometric series we need express the z in the form —ux:
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The radius of convergence of this power series is | — 2| < 1 which is the same as |z| < 1.

Example 2. Represent by a power series the function
z
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Here we leave the numerator outside for a minute and rewrite the 222 term as —2z2:
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Multiplying the series through by z is legitimate because it does not depend on n (think
of it as multiplying through by a constant).

The radius of convergence of this power series is | — 222 < 1, or |z| < v/2/2.
Differentiation and Integration of Power Series. For a polynomial, we dif-

ferentiate and integrate term by term, and this principle also holds for infinite-degree
polynomials or power series.

Theorem. If the radius of convergence for f(z) = >~ c,(r —a)"is R > 0or R =
oo, then f(x) is differentiable and continuous on (@ — R,a + R) (the open interval of
convergence), and
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and

where C' is the arbitrary constant of integration. The radii of convergence of the differ-
entiated and integrated power series are both R.

Example 3. Find a power series representation for the function
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We focus on the denominator first:
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We can write the term being differentiated here in terms of a geometric series:
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where the radius of convergence is [2z| < 1, i.e., |z| < 1/2.

To this point we have
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Now we bring back the numerator:
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Example 4. Use a power series to find

At first it appears that the integrand has a problem at t = 0, but by L’Hopital’s Rule,
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We can determine the value of C' by evaluating In(1 —¢) at say ¢t = 0:
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Reintroducing the denominator gives the integrand as a power series:
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Since a convergent power series is continuous on its open interval of convergence, notice
that
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in exact agreement with the L’Hopital’s Rule calculation done above.

We now integrate term by term:
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We can now use this antiderivative to evaluate definite integrals! That is,
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the difference of two convergent alternating series.




