
Math 113 Lecture #34
§11.10: Taylor and Maclaurin Series, Part I

Taylor’s Formula for the Coefficients. Last time we saw how to use the geometric
series to express certain kinds of functions as power series.

We now learn how to express many functions as power series.

We start by assuming that we have a power series with a positive radius of convergence:

f(x) =
∞∑
n=0

cn(x− a)n, |x− a| < R.

We learned last time that such an f is infinitely differentiable.

If we know what f(x) is, how do we find the coefficients c0, c1, c2, . . . ?

Well, if we evaluate the power series at its center, we get

f(a) =
∞∑
n=0

cn(a− a)n =
∞∑
n=0

cn0n = c0 + 0c1 + 0c2 + · · ·.

This gives
c0 = f(a).

How do we find c1? Well, we evalutate f ′(x) at the center:

f ′(a) =
∞∑
n=1

ncn(a− a)n−1 = 1c1 + 0c2 + 0c3 + · · ·.

So we have
c1 = f ′(a).

It now stands to reason that c2 is somehow related to the second derivative of f :

f ′′(a) =
∞∑
n=2

n(n− 1)cnx
n−2 = 1 · 2 · c2 + 0c3 + 0c4 + · · ·.

Thus we have

c2 =
f ′′(a)

1 · 2
=

f (2)(a)

2!
.

By f (n)(a) we mean the nth derivative of f evaluated at a.

Continuing the above pattern gives c3:

f (3)(a) =
∞∑
n=3

n(n− 1)(n− 2)cn(a− a)n−3 = 1 · 2 · 3 · c3 + 0c4 + 0c5 + · · ·.

This gives

c3 =
f (3)(a)

3!
.



By now you should be able to guess the formula for the value of the nth coefficient in the
power series for f :

cn =
f (n)(a)

n!
.

Putting this into the power series for f gives

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.

This power series is a called the Taylor series of the function f about a.

This power series is called a Maclaurin series if a = 0.

A word of warning on this Taylor series: we have shown that if f can be represented by
a convergent power series (i.e., R > 0), then f is equal to its Taylor series.

There are infinitely differentiable functions which are not equal to their Taylor series
about a, such as

f(x) =

{
exp(−1/x2) x 6= 0,

0 x = 0,

about a = 0.

Taylor Polynomials and the Remainder. We now consider the question of whether
an infinitely differentiable function f is equal to its Taylor series or not.

This requires an investigation of the sequence of partial sums for the Taylor series and
their remainders.

The nth partial sum of a Taylor series for f about a is called the nth-degree Taylor
Polynomial of f at a:

Tn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k.

The limit of the sequence of nth-degree Taylor Polynomials is the sum of the Taylor series:

∞∑
n=0

f (n)(a)

n!
(x− a)n = lim

n→∞
Tn(x).

How good of an approximation Tn(x) is to f(x) is determined by the remainder:

Rn(x) = f(x)− Tn(x), i.e., f(x) = Tn(x) + Rn(x).

For Tn(x) to converge to f(x), i.e., for the Taylor series of f to be equal to f , requires
that

lim
n→∞

Rn(x) = 0.

All of this discussion is on the interval |x− a| < R, where R is the radius of convergence
of the Taylor series for the infinitely differentiable function f about a.



Taylor found a way to measure the size of the remainder of a Taylor series.

Taylor’s Inequality for the Remainder. If there are constants M > 0 and d > 0
such that |f (n+1)(x)| ≤M for |x− a| ≤ d, then

|Rn(x)| ≤ M

(n + 1)!
|x− a|n+1 for |x− a| ≤ d.

Example 1. We will show that ex is equal to its Maclaurin series:

ex =
∞∑
n=0

xn

n!
.

The function f(x) = ex is infinitely differentiable, with f (n)(x) = ex, and so

f (n)(0) = e0 = 1.

Since cn = f (n)(0)/n!, the Maclaurin series for ex is
∞∑
n=0

xn

n!
.

The radius of convergence of this power series is R =∞:

lim
n→∞

∣∣∣∣xn+1/(n + 1)!

xn/n!

∣∣∣∣ = |x| lim
n→∞

1

n + 1
= 0 < 1.

We need to show that the remainder Rn(x) goes to 0 for any x to get that the Maclaurin
series for ex converges to ex.

For any positive number d we want to find M such that |f (n+1)(x)| ≤M for all 0 ≤ x ≤ d.

Since f (n+1)(x) = ex, the maximum value of f (n+1)(x) on |x| ≤ d is obtained at the right
endpoint:

M = ed.

Notice that this upper bound is the same for all orders of derivatives of ex on |x| ≤ d.

Applying Taylor’s Inequality for the remainder gives

|Rn(x)| ≤ ed

(n + 1)!
|x|n+1 for |x| ≤ d.

Since |x| ≤ d, then

|Rn(x)| ≤ eddn+1

(n + 1)!
for |x| ≤ d.

The right hand side of this inequality has limit 0 as n→∞ for any positive d.

It follows by the Squeeze Theorem that

lim
n→∞

Rn(x) = 0 for all x.

Thus ex is equal to its Maclaurin series:

ex =
∞∑
n=0

xn

n!
.


