
Math 113 Lecture #35
§11.10: Taylor and Maclaurin Series, Part II

The Binomial Theorem. It is easy to expand (1+x)k when k is an integer, but what
if k is any real number?

We will answer this by finding the Maclaurin series for f(x) = (1 + x)k.

We compute some of the derivatives of f to discern the pattern in the coefficients of that
power series:

f(x) = (1 + x)k, f(0) = 1, c0 = 1,
f ′(x) = k(1 + x)k−1, f ′(0) = k, c1 = k,

f ′′(x) = k(k − 1)(1 + x)k−2, f ′′(0) = k(k − 1), c2 =
k(k − 1)

2!
,

f ′′′(x) = k(k − 1)(k − 2)(1 + x)k−3, f ′′′(0) = k(k − 1)(k − 2), c3 =
k(k − 1)(k − 2)

3!
.

Continuing this calculation we identify the pattern for n ≥ 1:

f (n)(x) = k(k − 1) · · · (k − n + 1)(1− x)k−n,

f (n)(0) = k(k − 1) · · · (k − n + 1),

cn =
k(k − 1) · · · (k − n + 1)

n!
.

A standard notation for these coefficient is

c0 =

(
k
0

)
= 1, cn =

(
k
n

)
, n ≥ 1.

The Maclaurin Series for (1 + x)k is

∞∑
n=0

(
k
n

)
xn.

We compute its radius of convergence by the Ratio Test:

lim
n→∞

∣∣∣∣k(k − 1) · · · (k − n + 1)(k − n)xn+1

(n + 1)!
· n!

k(k − 1) · · · (k − n + 1)xn

∣∣∣∣
= |x| lim

n→∞

∣∣∣∣k − n

n + 1

∣∣∣∣ = |x|.

The Maclaurin series for (1+x)k converges for |x| < 1, i.e., it has a radius of convergence
R = 1.

The Binomial Theorem asserts that the Maclaurin series for (1+x)k converges to (1+x)k

for any real k and |x| < 1:

(1 + x)k =
∞∑
n=0

(
k
n

)
xn.



When k is a positive integer this becomes

(1 + x)k =
k∑

n=0

(
k
n

)
xn where

(
k
n

)
=

k(k − 1) · · · (k − n + 1)

n!
=

k!

n!(k − n)!
.

Example 1. Use the Binomial Theorem to expand
√

1 + x as a power series.

We use k = 1/2 in the Binomial Theorem to get

√
1 + x =

∞∑
n=0

(
1/2
n

)
xn = 1 +

x

2
− x2

8
+

3x3

48
− · · ·.

Here we understand that(
1/2
0

)
= 1, and

(
1/2
1

)
=

1

2
,

(
1/2
2

)
=

(1/2)(−1/2)

2
= −1

8
, etc.

Using a Table of Maclaurin Series. We can compute the Maclaurin series for
several functions and use these to find the power series for other functions.

Here is a Table of some Maclaurin series along with their radii of convergence.

1

1− x
=
∞∑
n=0

xn, R = 1,

ex =
∞∑
n=0

xn

n!
, R =∞,

sinx =
∞∑
n=0

(−1)nx2n+1

(2n + 1)!
, R =∞,

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
, R =∞,

tan−1(x) =
∞∑
n=0

(−1)nx2n+1

2n + 1
, R = 1,

(1 + x)k =
∞∑
n=0

(
k
n

)
xn, R = 1.

Example 2. Find the Maclaurin series for f(x) = x sin(1
2
x2).

We start with the Maclaurin series for sine:

sin
(
(1/2)x2

)
=
∞∑
n=0

(−1)n
(
(1/2)x2

)2n+1

(2n + 1)!
=
∞∑
n=0

(−1)nx4n+2

22n+1(2n + 1)!
.

Then we multiply this through by x:

x sin
(
(1/2)x2

)
=
∞∑
n=0

(−1)nx4n+3

22n+1(2n + 1)!
.



Using Power Series to Evaluate Limits. Recall that L’Hospital’s Rule is used
when we want to resolve indeterminant forms.

Power series expansions can sometimes resolve the indeterminant forms quicker than
L’Hospital’s Rule.

Example 3. Use power series to evaluate

lim
x→0

1− cosx

1 + x− ex
.

We use the Maclaurin series for cos x and ex:

1− cosx

1 + x− ex
=

1−
∞∑
n=0

(−1)nx2n

(2n)!

1 + x−
∞∑
n=0

xn

n!

=
1−

(
1− x2/2 + x4/24 + · · ·)

1 + x−
(
1 + x + x2/2 + x3/6 + · · ·

)
=

x2/2− x4/24 + · · ·
−x2/2− x3/6 + · · ·

.

From this we readily compute the limit:

lim
x→0

1− cosx

1 + x− ex
= −1.

How many times would we use L’Hospital’s Rule to get this?

Using Power Series to Find Indefinite Integrals. We have mentioned in the past
that there are continuous functions which do not have “nice” antiderivatives.

We can use power series to find these antiderivatives.

Example 4. Evaluate ∫
cosx− 1

x
dx.

The integrand is defined at x = 0 which by L’Hospital’s Rule is equal to 0.

We use the Maclaurin series for cosine to “simplify” the integrand:

cosx− 1

x
=

1

x

(
−1 +

∞∑
n=0

(−1)nx2n

(2n)!

)

=
1

x

(
−1 + 1− x2

2
+

x4

24
+ · · ·

)
=

1

x

∞∑
n=1

(−1)nx2n

(2n)!

=
∞∑
n=1

(−1)nx2n−1

(2n)!
.



We now integrate this term-by-term and add the arbitrary constant:∫
cosx− 1

x
dx =

∞∑
n=1

(−1)nx2n

2n(2n)!
+ C.

Multiplying and Dividing Power Series. We can get more power series represen-
tations for functions by multiplying and dividing power series.

These operations on power series involve lots of algebra.

There is a Theorem which states that if f(x) =
∑

cnx
n and g(x) =

∑
bnx

n converge for
|x| < R where R > 0, then f(x)g(x) is a power series convergent for |x| < R as well.

We find the product as if we were multiplying polynomials together.

For division of f(x) by g(x) we require that b0 6= 0 (i.e., g(0) 6= 0), so that 1/g(x) is
defined for small |x|, and by the multiplication Theorem, f(x)/g(x) is a power series
convergent for small |x|.
Example 5. Find the Maclaurin series for f(x) = ex sinx.

This is given by multiplying the Maclaurin series for ex and sin x:

ex sinx =

(
∞∑
n=0

xn

n!

)(
∞∑
n=0

(−1)nx2n+1

(2n + 1)!

)

=

(
1 + x +

x2

2
+

x3

6
+

x4

24
+ · · ·

)(
x− x3

6
+

x5

120
+ · · ·

)
= 1

(
x− x3

6
+

x5

120
+ · · ·

)
+ x

(
x− x3

6
+

x5

120
+ · · ·

)
+

x2

2

(
x− x3

6
+

x5

120
+ · · ·

)
+

x3

6

(
x− x3

6
+

x5

120
+ · · ·

)
+

x4

24

(
x− x3

6
+

x5

120
+ · · ·

)
= x + x2 +

x3

3
− 4x5

120
+ · · ·.

Example 6. Find the Maclaurin series for f(x) = sec x.

We recognize that secx = 1/ cosx, and so we are asking to divide the Maclaurin series
for cosx into 1.

We divide
∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2
+

x4

24
− · · ·



into 1, which we do by long division to get

secx = 1 +
x2

2
+

5x4

24
+ · · ·.


