
Math 113 Lecture #36
§11.11: Applications of Taylor Polynomials

The Taylor Polynomial Approximation. Suppose that f(x) is equal to its Taylor
series about a with a positive radius of convergence R:

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, |x− a| < R.

Then the sequence of nth-degree Taylor polynomials

Tn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k

= f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

converges to f(x) on |x− a| < R as n→∞.

This means that each Tn is an approximation of f(x) near x = a, with the error of the
approximation measured by the absolute value of the remainder:

|Rn(x)| = |f(x)− Tn(x)|.

The first-degree Taylor polynomial is nothing more than the tangent line approximation:

T1(x) = f(a) + f ′(a)(x− a) ≈ f(x) near x = a.

How good this linear approximation is near x = a is determined by Taylor’s Inequality:
if |f ′′(x)| ≤M for |x− a| ≤ d, then

|R1(x)| ≤ M

2
|x− a|2 for |x− a| ≤ d.

The second-degree Taylor polynomial is called the quadratic approximation:

T2(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 ≈ f(x) near x = a.

How good this quadratic approximation is near x = a is determined by Taylor’s Inequal-
ity: if |f ′′′(x)| ≤M for |x− a| ≤ d, then

|R2(x)| ≤ M

6
|x− a|3 for |x− a| ≤ d.

We can determine the error of the nth-degree Taylor polynomial approximation in a
similar way for n ≥ 3.

If the Taylor series is an alternating series, we can use the Alternating Series Estimate
to determine the error of the Taylor polynomials.

And if worse comes to worse, we can simply plot the graph of Rn(x) to see what the error
of the approximation is.



Example 1. Approximate f(x) = ln(1 + 2x) with the third-degree Taylor Polynomial
about x = 1, and determine the error of this approximation on the interval 1/2 ≤ x < 3/2.

There is no need to find all of the coefficients in the Taylor series for f(x), since we are
only interested in T3:

f(x) = ln(1 + 2x), f ′(x) = 2(1 + 2x)−1, f ′′(x) = −4(1 + 2x)−2, f ′′′(x) = 16(1 + 2x)−3.

We compute the first four coefficients in the Taylor series for f(x):

c0 = ln 3, c1 =
2

3
, c2 = − 4

322
= −2

9
, c3 =

16

333!
=

8

81
.

The third-degree Taylor polynomial for f(x) about a = 1 is

T3(x) = ln 3 +
2(x− 1)

3
− 2(x− 1)2

9
+

8(x− 1)3

81
.

Here are the graphs of f(x) = ln(1 + 2x) and T3(x).
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The green (or upper) graph is T3(x) and the red (or lower) is f(x): how can we tell?

From the graph it appears that T3(x) is a good approximation to f(x) on the interval
[1/2, 3/2].

We use Taylor’s Inequality to say how good, for which we need the fourth derivative:

f (4)(x) = −96(1 + 2x)−4.

We find an M for which |f (4)(x)| ≤ M on |x − 1| ≤ 1/2 by Calculus (i.e., find the
maximum value of the function on that interval), or a slightly rougher M by graphing
the fourth derivative.

Here is the graph of f (4)(x) on 1/2 ≤ x ≤ 3/2, i.e., on |x− 1| ≤ 1/2.
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From the graph we see that M = 6, and so the error of T3(x) as an approximation of
f(x) on |x− 1| ≤ 1/2 is

|R3(x)| ≤ 6

4!
|x− 1|4 =

(x− 1)4

4
≤ 1

244
=

1

64
≈ 0.016.

What degree n of a Taylor polynomial Tn(x) would we need to get |Rn(1.4)| ≤ 0.005?

Evaluating the estimate for R3(x) when x = 1.4 we get

|R3(1.4)| ≤ |1.4− 1|4

4
= 0.0064.

This is not small enough, so we consider T4(x) = T3(x) + c4x
4, where, since f (4)(x) =

−96(1 + 2x)−4, we have

c4 =
f (4)(1)

4!
=
−96

344!
=
−4

34
= − 4

81
.

For Taylor’s Inequality for T4 we need the maximum of the absolute value of f (5)(x) =
768(1 + 2x)−5 on |x− 1| ≤ 1/2, which, because f (5) is decreasing, occurs at the left-hand
endpoint:

M = f (5)(1/2) =
768

(1 + 1)5
= 24.

Thus on the interval |x− 1| ≤ 1/2, we have

|R4(x)| ≤ M

(4 + 1)!
|x− 1|5 ≤ 24

120
(1/2)5 = 0.00625.

More specifically we have

|R4(1.4)| ≤ 24

120
|1.4− 1|5 = 0.002048 ≤ 0.005.


