11.7 The Residue Theorem

March 25, 2020



As always (X, || - ||) is a complex Banach space.
Here is an outline for today.

e Isolated Singularities

e Residues and Winding Numbers

e The Residue Theorem
First Reading Quiz Question:

e What are the three types of isolated singularities that a
holomorphic function can have?

e How is the residue of a holomorphic function at an isolated
singularity computed?



Definition 11.7.1. For a point zp € C, an € > 0, and the
punctured open disk

U={zeC:0<|z—2z| <€},

for f : U — X holomorphic, we say that z; is an isolated
singularity of f if f is not assumed complex differentiable at zj.

For an isolated singularity zy of f the principal part of the Laurent
series

of f on B(zp,€) \ {zo} is the series

-1

> aw(z - 20)"

k=—00

We use the principal part to classify isolated singularities.



Definition. An isolated singularity zy of f is called a removable
singularity if the principal part of the Laurent series of f about z
is zero, i.e., ax =0 forall k =—-1,-2,-3,....

If f has a removable singularity at zy, then f extends to a
holomorphic function on B(zy, €) by means of the power series
>0 ak(z — 20)* convergent on B(z, €).

Example. The function

COS(Z)—l 1 00( l)k 2k 0 k2k 2
f(z):T:;Z Z
k=1 k=1
= 1+Z2+
2 4

has a removable singular at the isolated singularity zg = 0 of f.



Definition. An isolated singular zy of f is called a pole of order
N € N if the principal part of the Laurent series of f about zy has

the form )

flz)= > alz— )",

k=—N

i.e., ax = 0 for all k < —N in the Laurent series for f about z.
A pole of order 1 is called a simple pole.
Example. The function

sm(z 1 X (—1)kz2+ 1 1 2
()= 4; = E

has a pole of order N = 3 at the isolated singularity zy = 0 of f.



Definition. An isolated singularity zy of f is called an essential
singularity if the principal part of the Laurent series for f about z
has infinitely many nonzero terms, i.e., a, # 0 for infinitely many
—k eN.

Example. The function

- (1) -

(_1)k(1/z)2k+1

ot

(2K + 1)!
i (_1)kz—2k—1
e 7'
— (2k +1)!
111
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has an essential singularity at the isolated singularity zg = 0 of f.



What questions do you have?



Definition 11.7.4. For an open set U in C and finitely many
distinct points z1,...,z, in U, a function

f:U\{z1,...,za} = X

is called meromorphic if f is holomorphic on the open set
U\{z,...,zs} with f having poles at each z;.

Example 11.7.5. For polynomials p and g with g not identically
equal to 0, the rational function

p(2)/a(z),

in lowest terms (i.e., any common factors that p and g have have
already been cancelled), is a meromorphic function on
C\{z1,...,2zx} where z1, ...,z are the distinct roots of g.

FYI: It is standard practice is always assume that a rational
function is given in lowest terms, unless explicitly told otherwise.



Remark. We have already seen that the coefficient a_; of the
power (z — z) ™! in the Laurent series of a function f holomorphic
on a punctured disk B(zp,€) \ {20} is the quantity needed when
computing contour integrals of f on simply closed curves with zy in
its interior.

Because of the importance of this coefficient, we give it a name.

Definition 11.7.6. For a holomorphic f : B(zg,€) \ {zo} — X and
simple close curve v in B(zp,¢€) \ {2}, the quantity

— (f(z) d
omi P 1(2) d2
is called the residue of f at zy and is denoted by Res(f, zp).

Proposition 11.7.7. If f : B(zp,€) \ {zo0} — X is holomorphic,

then Res(f, z) is the coefficient a_1 of the power (z — z) ™! in
the Laurent series of f about z.



Proposition 11.7.8. Suppose a holomorphic f has an isolated
singularity at zy.
(i) The isolated singularity at zp is removable if and only if
lim,_,,, f(z) exists (as a complex number; the book
inaccurately uses the term finite).

(i) If for some nonnegative integer k the limit
lim,_,,(z — 20)¥f(z) exists (as a complex number), then the
isolated singularity zy of f is either a removable singularity or
a pole of order equal to or less than k.
(iii) If the limit lim,_(z — 2zp)f(z) exists (as a complex number),
then
Res(f, z0) = lim (z — z)f(2).

Z—Z)

The proof of this is HW (Exercise 11.29).



What questions do you have?



Journey to the Residue Theorem

Consider the contour integral

1 1
— }g dz
2w J, z — 29

for the closed contour v : [0, 2kn] — C given by y(t) = zo + e/
for a positive integer k.

Computing this contour integral gives
1 2k 1 0 1 2k 2k
— — (i df = — df = — = k.
o )y el o /O o

The closed contour v goes around zy in the counterclockwise
direction k times while the residue of 1/(z — z) at zp is 1.

If this same curve +y is traversed in the clockwise direction, i.e.,
v(0) = zo + €=, then we would get —k as the value of the
contour integral.



Furthermore, if 7y is closed contour that does not enclose z, then
1/(z — zp) is holomorphic on a simply connected open set
containing «y but not containing zy, so that by the Cauchy-Goursat

Theorem we have
1 1
— §l§ dz = 0.
2ri Jyz — 29

[Draw the picture]



These observations motivate the notion of the winding number.

Definition 11.7.9. For a closed contour v in C and z a point of
C not on 7, the winding number of « with respect to zj is the

quantity
1 1
/ = — dz.
(7, 20) 2mi yg z— 29 i

Lemma 11.7.12. For a simply connected open set U in C, a
closed contour v in U, and a point z5 € U not on 7, if

o0
= G

k=0

is uniformly convergent on compact subsets of U\ {z}, then there

holds )
— O N(z) dz = Res(N, z) (7, o).

27i ~

The proof of this is HW (Exercise 11.30).



What questions do you have?



Theorem 11.7.13 (The Residue Theorem). For a simply
connected U in C and finitely many points z,...,z, € U, if

f:U\{z1,...,za} = X

is holomorphic and + is a closed contour in U\ {zi,...,z,}, then
1 n
i ! f(z) dz = ;Res(ﬂzj)/(%zj)

Second Quiz Question: The Cauchy-Goursat Theorem and the
Cauchy Integral Formula are special cases of the Residue Theorem.

True



The Residue Theorem has the Cauchy-Goursat Theorem as a
special case.

When f : U — X is holomorphic, i.e., there are no points in U at
which f is not complex differentiable, and ~ in U is a simple closed
curve, we select any zp € U\ 7.

The residue of f at zy is 0 by Proposition 11.7.8 part (iii), i.e.,

Res(f,zp) = lim (z — z)f(z) = 0;

Z—Z)

hence, regardless of the value of /(7, zp), the Residue Theorem

gives
?gf(z) dz =0.
~



The Residue Theorem has Cauchy’s Integral formula also as special
case.

When f : U — X is holomorphic, and zg € U, then the function
g(z) = f(z)/(z — zy) is holomorphic on U\ {z}, so for any simple
closed curve 7 in U enclosing zy the Residue Theorem gives

1% IR 7§g(z) dz = Res(g, 20)/(7, 20);

2ri J, z — zo 2mi f,

here /(,2p) = 1 because ~ is a simple closed curve enclosing z,
and Res(g, zp) = f(zp) because using the power series for f about
Zo gives the Laurent series

z 0 (k) ( (k)
g(z) _ f( ) _ 1 Z f ( O)(Z—Zo)k _ Z f ( 0)(Z—Zo)k_1

Z — Z Z — Z ! k!
0 0 =0 k=0

in which the coefficient of (z — z9) ™! is f(z0).



What questions do you have?



To use the Residue Theorem requires that we compute the
required residues.

We have seen two ways to compute the residue of f at a point z:
by computing the Laurent series of f on B(zp,€) \ {z0}, or by
Proposition 11.7.8 part (iii).

Of the many other means of computing Res(f, zp) we mention
another one.

Proposition 11.7.15. Suppose g : B(zp,e) — X and

h: B(zy,€) — C are holomorphic. If g(z) # 0, h(z) =0, and
W (zp) # 0, then the function g(z)/h(z) : B(zo,€) \ {z0} — X is
meromorphic with a simple pole at zy and

e (3 2) = v




Note. While you are responsible for knowing and using Proposition
11.7.15, you are NOT responsible for the next proposition on
computing the residue for a pole of order 2.

It is given to show you how complicated residue calculations can
become for nonsimple poles.

Proposition. Suppose g : B(zp,¢) — X and h: B(z,€) — C are
holomorphic. If g(z) # 0, h(zp) =0, K (z) =0, and h"(z) # 0,
then g(z)/h(z) : B(zo,¢€) \ {z0} — X is meromorphic with a pole
of order 2 at zy, and

62) | 28'(2) 28(2)h(2)
Hes (h(z)’z°> T () 3 ()P

REMEMBER YOU ARE NOT RESPONSIBLE FOR THIS
FORMULA.



Remark. A truly hideous formula for the residue of a pole of order
N is given in my lecture notes.

It involves symbolic cofactor expansion of an N x N matrix.
Need | say more??7?

Remark. Unfortunately for an essential singularity of f at zy there
are no “simple” formulas for computing the residue of f at z.

We typically rely on computing, somehow, the Laurent series for f
at zg to find its residue at zp.



Example (in lieu of 11.7.16). For the holomorphic function
f(z) =1/(z° +1)
the numerator is g(z) = 1 and the denominator is h(z) = z% + 1.

The roots of h(z) =(z—i)(z+ i) are zy =i and zo = —1i, i.e,
h(z1) = 0 and h(z) = 0.

Since h'(z) = 2z we have
H(z1) =2i # 0 and H(z) = —2i #0.

By Proposition 11.7.15, the function f has a simple pole at each of
z1 and z» where
§(22) 1

g(z1) 1
f = = d f = = .
Res(f, z1) W(z) ~ 2i and Res(f, z) () o




The simple closed contour v = {z € C : |z| = 2}, i.e., the circle
centered at 0 with radius 2, encloses both simple poles of f.
[Draw the picture]

For the winding numbers we have /(,z1) =1 and I(vy,z) = 1.

By the Residue Theorem we compute

1 1
2my§f dz—ZResfzJ (v,z) = 5 T35



What questions do you have?



Example 11.7.17. Compute

/OO f(x) dx for f(x) = !

e 14 x4

The improper integral of f over R converges by a comparison test
with 1/(1 4 x2), i.e., since 1 + x* > 1 + x2, then

o< 1 < 1
T 1l4x* T 14 x2

and the improper integral of 1/(1 4 x?) converges because

R

=71 < Q.

(0.9} 1
/ dx = lim arctan(x)
-R

oo]-+X2 R— o0

Convergence of the improper integral of 1/(1 + x*) over R justifies

writing
1 R
/ — dx = |lim / 7] dx.
_001+X R—o0 _R]_+X




We recognize that the integrand is equal to the complex-valued

function
1

=1z

The function f(z) is complex differentiable except at the four roots
of the denominator h(z) = 1+ z*.

when z € R.

We can find these four roots using Euler's Formula as follows.

By writing o
1= eI7T+2In7T

for an arbitrary integer n, the equation

iT42inmT R

1+ z* = 0 becomes e z".

Taking fourth roots of both sides of this equation gives

e/7r/4+nl7r/2 — 2.



The root complex roots of h(z) = z*+ 1 are correspond to the four
distinct angles 7 /4, 37/4, 57 /4, 7w /4 in [0, 27); the four roots are

in/4 3im/4 5im/4 Tim/4

n=e""zn=e¢ ,73=¢€ ,z4 =€
There is one root in each quadrant of the complex plane.
The function f is meromorphic on C\ {z1, 22, z3, z4 }.
Since h'(z) = 423 and H/(z;) # 0 for all j = 1,2,3,4, each point z;
is a simple pole for f(z) = 1/h(z) with residue

Res(f,zj)) = —— = —5.

Now for the “magic” of the Residue Theorem.



For R > 2, form the closed simple contour D that is the sum of
the line v from —R to R and the top half C of the circle with
center 0 and radius R traversed counterclockwise.

[Draw the picture]

This gives



The contour D encloses two simple poles of f(z), the two in the
first and second quadrant.

The residues of f at these poles are

1 1
Res(f, 21) = 4(ei/4)3  gedin/a

1 1 1
Res(f, z2) = = =

4(e3i7r/4)3 4e9im/4 4eim/4’
The winding numbers of D at the poles are

I(D,z) =1for j=1,2.



By the Residue Theorem we have

1 . 1 1
%D 1 +Z4 dz = 27i |:RGS<1_|_Z4,Z]_> +RCS<1—|_Z4,Z2):|

4e3im/4 4eim/4

- %[6‘3'”/ fre
= 7 [cos(3n/4) — isin(3n/4) + cos(r/4) — isin(r/4)]

1




By the parameterization £(6) = Re'?, 6 € [0, 7], of C we obtain

1 T iRef
—— dz| = — 0 df
[t | e o
™| iRe™
= /0 1+ R4 a0

4 R
= ———— df
/0 |1_|_ R4e410|

m
R
§/0 |R4e49| — 1 do

Rx

CORA -1

where for the last inequality we have used the “reverse” triangle
inequality
|R4e419| . | . 1| < |R4e4l6' . (_1)|



Letting R — oo we obtain from

§£Df(z)dz:/_’;Hlx4 dx—i—/cf(z) dz

o0 1 T
—— dx = f(z)dz = —
/ool+x4 x 7% (2)dz = 5

lim /f(z) dz =0.
R—o0 /¢

that

since



What questions do you have?



