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March 25, 2020



As always (X , ‖ · ‖) is a complex Banach space.

Here is an outline for today.

• Isolated Singularities

• Residues and Winding Numbers

• The Residue Theorem

First Reading Quiz Question:

• What are the three types of isolated singularities that a
holomorphic function can have?

• How is the residue of a holomorphic function at an isolated
singularity computed?



Definition 11.7.1. For a point z0 ∈ C, an ε > 0, and the
punctured open disk

U = {z ∈ C : 0 < |z − z0| < ε},

for f : U → X holomorphic, we say that z0 is an isolated
singularity of f if f is not assumed complex differentiable at z0.

For an isolated singularity z0 of f the principal part of the Laurent
series

∞∑
k=−∞

ak(z − z0)k

of f on B(z0, ε) \ {z0} is the series

−1∑
k=−∞

ak(z − z0)k .

We use the principal part to classify isolated singularities.



Definition. An isolated singularity z0 of f is called a removable
singularity if the principal part of the Laurent series of f about z0
is zero, i.e., ak = 0 for all k = −1,−2,−3, . . . .

If f has a removable singularity at z0, then f extends to a
holomorphic function on B(z0, ε) by means of the power series∑∞

k=0 ak(z − z0)k convergent on B(z0, ε).

Example. The function

f (z) =
cos(z)− 1

z2
=

1

z2

∞∑
k=1

(−1)kz2k

(2k)!
=
∞∑
k=1

(−1)kz2k−2

(2k)!

= −1

2
+

z2

4!
+ · · ·

has a removable singular at the isolated singularity z0 = 0 of f .



Definition. An isolated singular z0 of f is called a pole of order
N ∈ N if the principal part of the Laurent series of f about z0 has
the form

f (z) =
−1∑

k=−N
ak(z − z0)k ,

i.e., ak = 0 for all k < −N in the Laurent series for f about z0.

A pole of order 1 is called a simple pole.

Example. The function

f (z) =
sin(z)

z4
=

1

z4

∞∑
k=0

(−1)kz2k+1

(2k + 1)!
=

1

z3
− 1

6z
+

z

5!
+ · · ·

has a pole of order N = 3 at the isolated singularity z0 = 0 of f .



Definition. An isolated singularity z0 of f is called an essential
singularity if the principal part of the Laurent series for f about z0
has infinitely many nonzero terms, i.e., ak 6= 0 for infinitely many
−k ∈ N.

Example. The function

f (z) = sin

(
1

z

)
=
∞∑
k=0

(−1)k(1/z)2k+1

(2k + 1)!

=
∞∑
k=0

(−1)kz−2k−1

(2k + 1)!

=
1

z
− 1

6z3
+

1

5!z5
− · · ·

has an essential singularity at the isolated singularity z0 = 0 of f .



What questions do you have?



Definition 11.7.4. For an open set U in C and finitely many
distinct points z1, . . . , zn in U, a function

f : U \ {z1, . . . , zn} → X

is called meromorphic if f is holomorphic on the open set
U \ {z1, . . . , zn} with f having poles at each zi .

Example 11.7.5. For polynomials p and q with q not identically
equal to 0, the rational function

p(z)/q(z),

in lowest terms (i.e., any common factors that p and q have have
already been cancelled), is a meromorphic function on
C \ {z1, . . . , zk} where z1, . . . , zk are the distinct roots of q.

FYI: It is standard practice is always assume that a rational
function is given in lowest terms, unless explicitly told otherwise.



Remark. We have already seen that the coefficient a−1 of the
power (z − z0)−1 in the Laurent series of a function f holomorphic
on a punctured disk B(z0, ε) \ {z0} is the quantity needed when
computing contour integrals of f on simply closed curves with z0 in
its interior.

Because of the importance of this coefficient, we give it a name.

Definition 11.7.6. For a holomorphic f : B(z0, ε) \ {z0} → X and
simple close curve γ in B(z0, ε) \ {z0}, the quantity

1

2πi

‰
γ
f (z) dz

is called the residue of f at z0 and is denoted by Res(f , z0).

Proposition 11.7.7. If f : B(z0, ε) \ {z0} → X is holomorphic,
then Res(f , z0) is the coefficient a−1 of the power (z − z0)−1 in
the Laurent series of f about z0.



Proposition 11.7.8. Suppose a holomorphic f has an isolated
singularity at z0.

(i) The isolated singularity at z0 is removable if and only if
limz→z0 f (z) exists (as a complex number; the book
inaccurately uses the term finite).

(ii) If for some nonnegative integer k the limit
limz→z0(z − z0)k f (z) exists (as a complex number), then the
isolated singularity z0 of f is either a removable singularity or
a pole of order equal to or less than k .

(iii) If the limit limz→z0(z − z0)f (z) exists (as a complex number),
then

Res(f , z0) = lim
z→z0

(z − z0)f (z).

The proof of this is HW (Exercise 11.29).



What questions do you have?



Journey to the Residue Theorem

Consider the contour integral

1

2πi

‰
γ

1

z − z0
dz

for the closed contour γ : [0, 2kπ]→ C given by γ(t) = z0 + e iθ

for a positive integer k .

Computing this contour integral gives

1

2πi

ˆ 2kπ

0

1

e iθ
(ie iθ) dθ =

1

2π

ˆ 2kπ

0
dθ =

2kπ

2π
= k.

The closed contour γ goes around z0 in the counterclockwise
direction k times while the residue of 1/(z − z0) at z0 is 1.

If this same curve γ is traversed in the clockwise direction, i.e.,
γ(θ) = z0 + e−iθ, then we would get −k as the value of the
contour integral.



Furthermore, if γ is closed contour that does not enclose z0, then
1/(z − z0) is holomorphic on a simply connected open set
containing γ but not containing z0, so that by the Cauchy-Goursat
Theorem we have

1

2πi

‰
γ

1

z − z0
dz = 0.

[Draw the picture]



These observations motivate the notion of the winding number.

Definition 11.7.9. For a closed contour γ in C and z0 a point of
C not on γ, the winding number of γ with respect to z0 is the
quantity

I (γ, z0) =
1

2πi

‰
γ

1

z − z0
dz .

Lemma 11.7.12. For a simply connected open set U in C, a
closed contour γ in U, and a point z0 ∈ U not on γ, if

N(z) =
∞∑
k=0

bk
(z − z0)k

is uniformly convergent on compact subsets of U \ {z0}, then there
holds

1

2πi

‰
γ
N(z) dz = Res(N, z0)I (γ, z0).

The proof of this is HW (Exercise 11.30).



What questions do you have?



Theorem 11.7.13 (The Residue Theorem). For a simply
connected U in C and finitely many points z1, . . . , zn ∈ U, if

f : U \ {z1, . . . , zn} → X

is holomorphic and γ is a closed contour in U \ {z1, . . . , zn}, then

1

2πi

‰
γ
f (z) dz =

n∑
j=1

Res(f , zj)I (γ, zj).

Second Quiz Question: The Cauchy-Goursat Theorem and the
Cauchy Integral Formula are special cases of the Residue Theorem.

True



The Residue Theorem has the Cauchy-Goursat Theorem as a
special case.

When f : U → X is holomorphic, i.e., there are no points in U at
which f is not complex differentiable, and γ in U is a simple closed
curve, we select any z0 ∈ U \ γ.

The residue of f at z0 is 0 by Proposition 11.7.8 part (iii), i.e.,

Res(f , z0) = lim
z→z0

(z − z0)f (z) = 0;

hence, regardless of the value of I (γ, z0), the Residue Theorem
gives ‰

γ
f (z) dz = 0.



The Residue Theorem has Cauchy’s Integral formula also as special
case.

When f : U → X is holomorphic, and z0 ∈ U, then the function
g(z) = f (z)/(z − z0) is holomorphic on U \ {z0}, so for any simple
closed curve γ in U enclosing z0 the Residue Theorem gives

1

2πi

‰
γ

f (z)

z − z0
dz =

1

2πi

‰
γ
g(z) dz = Res(g , z0)I (γ, z0);

here I (γ, z0) = 1 because γ is a simple closed curve enclosing z0,
and Res(g , z0) = f (z0) because using the power series for f about
z0 gives the Laurent series

g(z) =
f (z)

z − z0
=

1

z − z0

∞∑
k=0

f (k)(z0)

k!
(z−z0)k =

∞∑
k=0

f (k)(z0)

k!
(z−z0)k−1

in which the coefficient of (z − z0)−1 is f (z0).



What questions do you have?



To use the Residue Theorem requires that we compute the
required residues.

We have seen two ways to compute the residue of f at a point z0:
by computing the Laurent series of f on B(z0, ε) \ {z0}, or by
Proposition 11.7.8 part (iii).

Of the many other means of computing Res(f , z0) we mention
another one.

Proposition 11.7.15. Suppose g : B(z0, ε)→ X and
h : B(z0, ε)→ C are holomorphic. If g(z0) 6= 0, h(z0) = 0, and
h′(z0) 6= 0, then the function g(z)/h(z) : B(z0, ε) \ {z0} → X is
meromorphic with a simple pole at z0 and

Res

(
g(z)

h(z)
, z0

)
=

g(z0)

h′(z0)
.



Note. While you are responsible for knowing and using Proposition
11.7.15, you are NOT responsible for the next proposition on
computing the residue for a pole of order 2.

It is given to show you how complicated residue calculations can
become for nonsimple poles.

Proposition. Suppose g : B(z0, ε)→ X and h : B(z0, ε)→ C are
holomorphic. If g(z0) 6= 0, h(z0) = 0, h′(z0) = 0, and h′′(z0) 6= 0,
then g(z)/h(z) : B(z0, ε) \ {z0} → X is meromorphic with a pole
of order 2 at z0, and

Res

(
g(z)

h(z)
, z0

)
=

2g ′(z0)

h′′(z0)
− 2g(z0)h(3)(z0)

3[h′′(z0)]2
.

REMEMBER YOU ARE NOT RESPONSIBLE FOR THIS
FORMULA.



Remark. A truly hideous formula for the residue of a pole of order
N is given in my lecture notes.

It involves symbolic cofactor expansion of an N × N matrix.

Need I say more????

Remark. Unfortunately for an essential singularity of f at z0 there
are no “simple” formulas for computing the residue of f at z0.

We typically rely on computing, somehow, the Laurent series for f
at z0 to find its residue at z0.



Example (in lieu of 11.7.16). For the holomorphic function

f (z) = 1/(z2 + 1)

the numerator is g(z) = 1 and the denominator is h(z) = z2 + 1.

The roots of h(z) = (z − i)(z + i) are z1 = i and z2 = −i , i.e.,
h(z1) = 0 and h(z2) = 0.

Since h′(z) = 2z we have

h′(z1) = 2i 6= 0 and h′(z2) = −2i 6= 0.

By Proposition 11.7.15, the function f has a simple pole at each of
z1 and z2 where

Res(f , z1) =
g(z1)

h′(z1)
=

1

2i
and Res(f , z2) =

g(z2)

h′(z2)
= − 1

2i
.



The simple closed contour γ = {z ∈ C : |z | = 2}, i.e., the circle
centered at 0 with radius 2, encloses both simple poles of f .
[Draw the picture]

For the winding numbers we have I (γ, z1) = 1 and I (γ, z2) = 1.

By the Residue Theorem we compute

1

2πi

‰
γ
f (z) dz =

2∑
j=1

Res(f , zj)I (γ, zj) =
1

2i
− 1

2i
= 0.



What questions do you have?



Example 11.7.17. Compute

ˆ ∞
−∞

f (x) dx for f (x) =
1

1 + x4
.

The improper integral of f over R converges by a comparison test
with 1/(1 + x2), i.e., since 1 + x4 ≥ 1 + x2, then

0 ≤ 1

1 + x4
≤ 1

1 + x2

and the improper integral of 1/(1 + x2) converges because

ˆ ∞
−∞

1

1 + x2
dx = lim

R→∞
arctan(x)

∣∣∣∣R
−R

= π <∞.

Convergence of the improper integral of 1/(1 + x4) over R justifies
writing ˆ ∞

−∞

1

1 + x4
dx = lim

R→∞

ˆ R

−R

1

1 + x4
dx .



We recognize that the integrand is equal to the complex-valued
function

f (z) =
1

1 + z4
when z ∈ R.

The function f (z) is complex differentiable except at the four roots
of the denominator h(z) = 1 + z4.

We can find these four roots using Euler’s Formula as follows.

By writing
−1 = e iπ+2inπ

for an arbitrary integer n, the equation

1 + z4 = 0 becomes e iπ+2inπ = z4.

Taking fourth roots of both sides of this equation gives

e iπ/4+niπ/2 = z .



The root complex roots of h(z) = z4 + 1 are correspond to the four
distinct angles π/4, 3π/4, 5π/4, 7π/4 in [0, 2π); the four roots are

z1 = e iπ/4, z2 = e3iπ/4, z3 = e5iπ/4, z4 = e7iπ/4.

There is one root in each quadrant of the complex plane.

The function f is meromorphic on C \ {z1, z2, z3, z4}.

Since h′(z) = 4z3 and h′(zj) 6= 0 for all j = 1, 2, 3, 4, each point zj
is a simple pole for f (z) = 1/h(z) with residue

Res(f , zj) =
1

h′(zj)
=

1

4z3j
.

Now for the “magic” of the Residue Theorem.



For R ≥ 2, form the closed simple contour D that is the sum of
the line γ from −R to R and the top half C of the circle with
center 0 and radius R traversed counterclockwise.
[Draw the picture]

This gives

‰
D
f (z)dz =

ˆ
γ
f (z) dz+

ˆ
C
f (z) dz =

ˆ R

−R

1

1 + x4
dx+

ˆ
C
f (z) dz .



The contour D encloses two simple poles of f (z), the two in the
first and second quadrant.

The residues of f at these poles are

Res(f , z1) =
1

4(e iπ/4)3
=

1

4e3iπ/4

Res(f , z2) =
1

4(e3iπ/4)3
=

1

4e9iπ/4
=

1

4e iπ/4
.

The winding numbers of D at the poles are

I (D, zj) = 1 for j = 1, 2.



By the Residue Theorem we have

‰
D

1

1 + z4
dz = 2πi

[
Res

(
1

1 + z4
, z1

)
+ Res

(
1

1 + z4
, z2

)]
= 2πi

[
1

4e3iπ/4
+

1

4e iπ/4

]
=
πi

2

[
e−3iπ/4 + e−iπ/4

]
=
πi

2

[
cos(3π/4)− i sin(3π/4) + cos(π/4)− i sin(π/4)

]
=
πi

2

[
− 1√

2
− i√

2
+

1√
2
− i√

2

]
=
πi

2

(
− 2i√

2

)
=

π√
2
.



By the parameterization ξ(θ) = Re iθ, θ ∈ [0, π], of C we obtain∣∣∣∣ˆ
C

1

1 + z4
dz

∣∣∣∣ =

∣∣∣∣ˆ π

0

iRe iθ

1 + R4e4iθ
dθ

∣∣∣∣
≤
ˆ π

0

∣∣∣∣ iRe iθ

1 + R4e4iθ

∣∣∣∣ dθ

=

ˆ π

0

R

|1 + R4e4iθ|
dθ

≤
ˆ π

0

R

|R4e4iθ| − 1
dθ

=
Rπ

R4 − 1
,

where for the last inequality we have used the “reverse” triangle
inequality

|R4e4iθ| − | − 1| ≤ |R4e4iθ − (−1)|.



Letting R →∞ we obtain from

‰
D
f (z)dz =

ˆ R

−R

1

1 + x4
dx +

ˆ
C
f (z) dz

that ˆ ∞
−∞

1

1 + x4
dx =

‰
D
f (z)dz =

π√
2

since

lim
R→∞

ˆ
C
f (z) dz = 0.



What questions do you have?


