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Throughout we assume that V is a vector space over a field F.

Recall that L (V ) is the vector space of linear operators on V .

Definition 12.1.1. A linear operator P ∈ L (V ) is called a
projection if

P2 = P.

Example 12.1.2. If P ∈ L (V ) is a projection, then

I − P ∈ L (V )

is also a projection, where I ∈ L (V ) is the identity operator
defined by I (v) = v for all v ∈ V .

You have it as HW (Exercise 12.1) to show that I − P is a
projection.

The linear operator I − P is called the complementary projection of
P (and we will see why shortly).



Second Reading Quiz Question: An inner product is required to
define a projection.

False

Lemma 12.1.3. Suppose P ∈ L (V ) is a projection. Then

(i) y ∈ R(P) if and only if Py = y, and

(ii) N (P) = R(I − P).

Proof. (i) If Py = y, then y ∈ R(P).
If y ∈ R(P), then there exists x ∈ V such that y = Px.
Since P2 = P we have Py = P2x = Px = y.

(ii) We have x ∈ N (P) if and only if Px = 0.
We also have Px = 0 if and only if (I − P)x = x− Px = x.
Because I − P is a projection by Example 12.1.2, by part (i) we
have (I − P)x = x if and only if x ∈ R(I − P).
Thus we have x ∈ N (P) if and only if x ∈ R(I − P). �



Remark. Because I − P is a projection when P is a projection, we
can apply part (ii) of Lemma 12.1.3 to I − P to get

N (I − P) = R(P).

Theorem 12.1.4. If P ∈ L (V ) is a projection, then

V = R(P)⊕N (P).

Corollary 12.1.5. For dim(V ) <∞, if P ∈ L (V ) is a projection
with S = [s1, . . . , sk ] a basis for R(P) and T = [t1, . . . , tl ] a basis
for N (P), then S ∪ T is a basis for V (i.e., k + l = dim(V )) and
the block matrix representation of P in the basis S ∪ T is[

I 0
0 0

]
where I is the k × k identity matrix, and each 0 is a zero matrix of
appropriate size.



What questions do you have?



Theorem 12.1.6. For subspaces W1 and W2 of V (not assumed
finite dimensional), if V = W1 ⊕W2, then there exists a unique
projection P ∈ L (V ) such that

R(P) = W1 and N (P) = W2.

Definition. The unique projection P ∈ L (V ) associated to
V = W1 ⊕W2 in Theorem 12.1.6 is called the projection onto W1

along W2.
[Draw the picture]



Note. For a projection P ∈ L (V ), we have by Theorem 12.1.4
that

V = R(P)⊕N (P),

so that with W1 = R(P) and W2 = N (P), the projection P is the
unique projection onto R(P) along N (P).

Note. We sometimes says that a projection P is a projection onto
R(P) without reference to along N (P) because the along part is
always given by N (P).

Example. There do exist distinct projections P,Q ∈ L (V ) with
R(P) = R(Q) and N (P) 6= N (Q).

For example, the projections P,Q ∈ L (C2) defined by

P(e1) = e1,P(e2) = 0,Q(e1) = e1,Q(e1 + e2) = 0,

has the same range but different kernels.



Remark. In a finite dimensional inner product space (V , 〈·, ·〉), the
projection P onto W1 along W2 is an orthogonal projection only
when

W2 = W⊥
1 .

In an infinite dimensional inner product space (V , 〈·, ·〉), a
projection P onto W1 along W2 is an orthogonal projection only
when

• W1 is a closed subspace, and

• W2 = W⊥
1 .

Note. Sometimes nonorthogonal projections are called oblique
projections.



What questions do you have?



Example (in lieu of 12.1.7). Consider the vector space
V = C ([0, 1],C) equipped with the inner product

〈f , g〉 =

ˆ 1

0
f (t)g(t) dt.

Define the operator P : V → V by P(f ) is the constant function
from [0, 1] to C with value f (0).

The operator P is linear because for f , g ∈ V and a, b ∈ C there
holds

P(af + bg) = af (0) + bg(0) = aP(f ) + bP(g).

The operator P ∈ L (V ) is a projection because for all f ∈ V
there holds

P2(f ) = P(f (0)) = f (0) = P(f ).

The subspace R(P) consists of the constant functions from [0, 1]
to C.



The subspace N (P) consists of those continuous functions
f : [0, 1]→ C such that f (0) = 0.

By Theorem 12.1.4 there holds V = R(P)⊕N (P), i.e., each
function f ∈ V can be written uniquely as

f (t) = f (0) + (f (t)− f (0))

for f (0) ∈ R(P) and f (t)− f (0) ∈ N (P).

With W1 = R(P) and W2 = N (P), we have by Theorem 12.1.6
that P is the unique projection onto W1 along W2.

Is P an orthogonal projection?

The answer is no because there exists f ∈W1 and g ∈W2 such
that 〈f , g〉 6= 0, i.e., for f = 1 and g(t) = t we have

〈f , g〉 =

ˆ 1

0
t dt = 1/2 6= 0.



Recall from Section 4.2 that a subspace W of V is invariant for
L ∈ L (V ) or that W is L-invariant if

L(W ) ⊂W .

Theorem 12.1.8. For L ∈ L (V ), a subspace W of V is
L-invariant if and only if for any projection P ∈ L (V ) onto W
there holds

LP = PLP.

Theorem 12.1.9. Suppose W1,W2 are subspaces of V for which
V = W1 ⊕W2, and L ∈ L (V ). Then W1 and W2 are both
L-invariant if and only if the projection P onto W1 along W2

satisfies
LP = PL.



Examples. (i) An invariant space for L =

[
2 0
0 −1

]
is

W = span(e1) and P =

[
1 −1
0 0

]
is a projection onto W because

P2 =

[
1 −1
0 0

] [
1 −1
0 0

]
=

[
1 −1
0 0

]
= P

and R(P) = span(e1) = W . We verify Theorem 12.1.8:

LP =

[
2 0
0 −1

] [
1 −1
0 0

]
=

[
2 −2
0 0

]

PL =

[
1 −1
0 0

] [
2 0
0 −1

]
=

[
2 1
0 0

]
6= LP

but

PLP =

[
2 1
0 0

] [
1 −1
0 0

]
=

[
2 −2
0 0

]
= LP.



(ii) Complementary invariant subspaces for L =

[
2 0
0 −1

]
are

W1 = span(e1) and W2 = span(e2).

The linear operator P =

[
1 0
0 0

]
is the projection onto W1 along

W2 because

P2 =

[
1 0
0 0

] [
1 0
0 0

]
=

[
1 0
0 0

]
= P

and R(P) = span(e1) = W1 and N (P) = span(e2) = W2. We
verify Theorem 12.1.9:

LP =

[
2 0
0 −1

] [
1 0
0 0

]
=

[
2 0
0 0

]
and

PL =

[
1 0
0 0

] [
2 0
0 −1

]
=

[
2 0
0 0

]
= LP.



What questions do you have?



First Reading Quiz Question: What are the properties of the rank-1
eigenprojections Pi of a simple finite dimensional linear operator A?



Recall for i , j = 1, . . . , n that δij is the (i , j)th entry of the n × n
identity matrix I .

Proposition 12.1.10. Suppose A ∈ Mn(C) is a simple operator
whose distinct (complex) eigenvalues are λ1, . . . , λn. Let
S ∈ Mn(C) be the matrix whose columns are the corresponding
right eigenvectors of A, and denote the i th column of S by ri . Let
`T1 , . . . , `

T
n be the corresponding left eigenvectors of A, i.e., the

rows of S−1. Define the n × n matrices Pk = rk`
T
k , k = 1, . . . , n.

Then

(i) `Ti rj = δij for all i , j = 1, . . . , n,

(ii) PiPj = δijPi for all i , j = 1, . . . , n,

(iii) PiA = APi = λiPi for all i = 1, . . . , n,

(iv)
∑n

i=1 Pi = I , and

(v) A =
∑n

i=1 λiPi (Spectral Decomposition).



Remark. The matrices Pi are projections by part (ii) of
Proposition 12.1.10 because

P2
i = PiPi = δiiPi = Pi .

The rank of each of these projections is one because the columns
of Pi are all scalar multiples of the nonzero right eigenvector ri .

Indeed the range of P is the one-dimensional eigenspace of A
corresponding to the eigenvalue λi .

Definition. For a simple operator A ∈ Mn(C) the rank-1
projections P1, . . . ,Pn in Proposition 12.1.10 are called the
eigenprojections of A.



Example (in lieu of 12.1.11). The eigenvalues and right
eigenvectors of the simple

A =

[
1 1
4 1

]
∈ M2(C)

are

λ1 = 3, r1 =

[
1
2

]
, λ2 = −1, r2 =

[
1
−2

]
.

The matrix of right eigenvectors

S =
[
r1 r2

]
=

[
1 1
2 −2

]
has inverse

S−1 = −1

4

[
−2 −1
−2 1

]
=

1

4

[
2 1
2 −1

]
.

The rows of S−1 give left eigenvectors of A:

`T1 =
1

4

[
2 1

]
, `T2 =

1

4

[
2 −1

]
.



The eigenprojections are

P1 = r1`
T
1 =

1

4

[
1
2

] [
2 1

]
=

1

4

[
2 1
4 2

]
and

P2 = r2`
T
2 =

1

4

[
1
−2

] [
2 −1

]
=

1

4

[
2 −1
−4 2

]
.

Each of P1 and P2 has rank 1, and we can verify properties (ii)-(v)
listed in Proposition 12.1.10.

For property (ii) we have

P1P2 =
1

16

[
2 1
4 2

] [
2 −1
−4 2

]
=

[
0 0
0 0

]
= 0,

P2
1 =

1

16

[
2 1
4 2

] [
2 1
4 2

]
=

1

16

[
8 4

16 8

]
=

1

4

[
2 1
4 2

]
= P1,

P2
2 =

1

16

[
2 −1
−4 2

] [
2 −1
−4 2

]
=

1

16

[
8 −4
−16 8

]
=

1

4

[
2 −1
−4 2

]
= P2.



For property (iii) we have

AP1 =
1

4

[
1 1
4 1

] [
2 1
4 2

]
=

1

4

[
6 3

12 6

]
,

P1A =
1

4

[
2 1
4 2

] [
1 1
4 1

]
=

1

4

[
6 3

12 6

]
= AP1 =

3

4

[
2 1
4 2

]
= λ1P1

AP2 =
1

4

[
1 1
4 1

] [
2 −1
−4 2

]
=

1

4

[
−2 1
4 −2

]
,

P2A =
1

4

[
2 −1
−4 2

] [
1 1
4 1

]
=

1

4

[
−2 1
4 −2

]
= AP2 = −1

4

[
2 −1
−4 2

]
= λ2P2.



For property (iv) we have

P1 + P2 =
1

4

{[
2 1
4 2

]
+

[
2 −1
−4 2

]}
=

1

4

[
4 0
0 4

]
= I .

Finally for property (v), the spectral decomposition, we have

λ1P1 + λ2P2 =
3

4

[
2 1
4 2

]
− 1

4

[
2 −1
−4 2

]
=

[
1 1
4 1

]
= A.



What questions do you have?


