12.1 Projections
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Throughout we assume that V is a vector space over a field F.
Recall that £(V) is the vector space of linear operators on V.

Definition 12.1.1. A linear operator P € £ (V) is called a
projection if
P2 =P,

Example 12.1.2. If P € Z(V) is a projection, then

I —PeZ(V)
is also a projection, where | € £ (V) is the identity operator
defined by /(v) = v for all v € V.

You have it as HW (Exercise 12.1) to show that / — P is a
projection.

The linear operator | — P is called the complementary projection of
P (and we will see why shortly).



Second Reading Quiz Question: An inner product is required to
define a projection.

False

Lemma 12.1.3. Suppose P € Z(V) is a projection. Then
(i) y € Z(P) if and only if Py =y, and

(i) A (P)=2(l — P).

Proof. (i) If Py =y, then y € Z(P).

If y € Z(P), then there exists x € V such that y = Px.

Since P2 = P we have Py = P?>x = Px =y.

(i) We have x € #(P) if and only if Px = 0.

We also have Px =0 if and only if (/ — P)x =x — Px =x.
Because | — P is a projection by Example 12.1.2, by part (i) we
have (I — P)x = x if and only if x € Z(] — P).

Thus we have x € A(P) if and only if x € Z(I — P).



Remark. Because | — P is a projection when P is a projection, we
can apply part (ii) of Lemma 12.1.3 to / — P to get

N (I = P)=2%(P).
Theorem 12.1.4. If P € Z(V) is a projection, then
V =2%(P)& A(P).

Corollary 12.1.5. For dim(V) < oo, if P € Z(V) is a projection

with S = [s1,...,sk| a basis for Z(P) and T = [t1,...,t/] a basis
for A#°(P), then SU T is a basis for V (i.e., k +/ = dim(V)) and
the block matrix representation of P in the basis SU T is

I 0

0 0
where [ is the k x k identity matrix, and each 0 is a zero matrix of
appropriate size.



What questions do you have?



Theorem 12.1.6. For subspaces W; and W, of V' (not assumed
finite dimensional), if V = Wy @ W, then there exists a unique
projection P € .Z(V) such that

%(P) = W1 and JV(P) = W2.

Definition. The unique projection P € Z (V) associated to

V =W; ® W, in Theorem 12.1.6 is called the projection onto W;
along Ws.

[Draw the picture]



Note. For a projection P € Z(V), we have by Theorem 12.1.4
that

V =2%(P)® V(P),

so that with Wi = Z(P) and W, = .#'(P), the projection P is the
unique projection onto Z(P) along .4 (P).

Note. We sometimes says that a projection P is a projection onto
Z(P) without reference to along .#(P) because the along part is
always given by .4 (P).

Example. There do exist distinct projections P, Q € .Z (V) with
Z(P) = 2(Q) and A (P) # N (Q).

For example, the projections P, @ € .Z(C?) defined by
P(e1) = e1, P(e2) = 0, Q(e1) = e1, Qe1 + &) =0,

has the same range but different kernels.



Remark. In a finite dimensional inner product space (V, (-, -)), the
projection P onto Wj along W5 is an orthogonal projection only

when
Ws = Wit

In an infinite dimensional inner product space (V, (-,-)), a
projection P onto Wj along W5 is an orthogonal projection only
when

e W is a closed subspace, and

o Wy = Wi
Note. Sometimes nonorthogonal projections are called oblique
projections.



What questions do you have?



Example (in lieu of 12.1.7). Consider the vector space
V = C([0,1],C) equipped with the inner product

17
(r.6) = [ F(Oe(o) d.
Define the operator P : V — V by P(f) is the constant function
from [0, 1] to C with value £(0).

The operator P is linear because for f,g € V and a, b € C there
holds

P(af + bg) = af(0) + bg(0) = aP(f) + bP(g).

The operator P € Z(V) is a projection because for all f € V
there holds
P2(f) = P(f(0)) = £(0) = P(f).

The subspace Z(P) consists of the constant functions from [0, 1]
to C.



The subspace .47(P) consists of those continuous functions
f :]0,1] — C such that f(0) = 0.

By Theorem 12.1.4 there holds V = Z(P) & .4 (P), i.e., each
function f € V can be written uniquely as

f(t) = £(0) + (£(¢) — £(0))

for £(0) € Z(P) and f(t) — f(0) € A (P).

With Wi = Z(P) and W, = 4'(P), we have by Theorem 12.1.6
that P is the unique projection onto W; along W,.

Is P an orthogonal projection?

The answer is no because there exists f € Wj and g € W5 such
that (f,g) #0, i.e., for f =1 and g(t) = t we have

<f,g>:/01tdt:1/27é0.



Recall from Section 4.2 that a subspace W of V is invariant for
L e Z(V) or that W is L-invariant if

L(W) C W.

Theorem 12.1.8. For L € #(V), a subspace W of V is
L-invariant if and only if for any projection P € £ (V) onto W
there holds

LP = PLP.

Theorem 12.1.9. Suppose Wi, W5 are subspaces of V for which
V=W &W,, and L € Z(V). Then Wy and W, are both
L-invariant if and only if the projection P onto W along W,

satisfies
LP = PL.



Examples. (i) An invariant space for L = [g _01] is

1 -1
0 O

P=lo o) o=l o="

and Z(P) = span(e;) = W. We verify Theorem 12.1.8:

o= SR -
welp B 2B e

oo 35 )= 7w

W = span(e;) and P = [ ] is a projection onto W because



(ii) Complementary invariant subspaces for L = [g _01] are
Wi = span(e;) and W, = span(ey).

The linear operator P = [(1) 8} is the projection onto W; along

S TR

and Z(P) = span(e;) = Wy and A (P) = span(e;) = W,. We
verify Theorem 12.1.9:

=l Sl ol =[5 o

N I A

W5 because

and



What questions do you have?



First Reading Quiz Question: What are the properties of the rank-1
eigenprojections P; of a simple finite dimensional linear operator A?



Recall for i,j = 1,..., n that §;; is the (i,j)™" entry of the n x n
identity matrix /.

Proposition 12.1.10. Suppose A € M,(C) is a simple operator
whose distinct (complex) eigenvalues are A1,..., A,. Let

S € Mp(C) be the matrix whose columns are the corresponding
right eigenvectors of A, and denote the i*" column of S by 1;. Let

¢,..., €} be the corresponding left eigenvectors of A, i.e., the
rows of S71. Define the n x n matrices Py = rkf;f, k=1,...,n
Then

(i) £Frj =g foralli,j=1,...,n,
(II) P,'PJ' = 5UP’ for all I,_j = ]_7 ceey
(i) PiA=AP; = \jP; foralli=1,...,n,
(iv) >>7, Pi=1, and
(v) A=3""1 AiPi (Spectral Decomposition).



Remark. The matrices P; are projections by part (ii) of
Proposition 12.1.10 because

P? = PiP; = 6;iP; = Pi.
The rank of each of these projections is one because the columns
of P; are all scalar multiples of the nonzero right eigenvector r;.

Indeed the range of P is the one-dimensional eigenspace of A
corresponding to the eigenvalue \;.

Definition. For a simple operator A € M,(C) the rank-1
projections P, ..., P, in Proposition 12.1.10 are called the
eigenprojections of A.



Example (in lieu of 12.1.11). The eigenvalues and right
eigenvectors of the simple

A= E ﬂ € My(C)

are

)\1:3, ry = |:;:|, )\2:—1, Iro = |:_12:|

The matrix of right eigenvectors

has inverse
5_1:_1 -2 -1 :1 2 1
41-2 1 412 —1|°
The rows of S~ give left eigenvectors of A:
1

eTzi[z 1], &z =7[2 -1].



The eigenprojections are

11 12 1
Pl:rlng:4[2] [2 1]:4{4 2}

1(1 1{2 -1
_ 1 1.1
Pg—r2€2—4[_2} 2 —1] 4{_4 2].
Each of P; and P has rank 1, and we can verify properties (ii)-(v)
listed in Proposition 12.1.10.

and

For property (ii) we have
12 1][2 -1 0 0
Pha= 16 2] [—4 2]_[0 0]_0’
pp_ 12 112 1] _ 1778 4] _1[21]_,
171604 2[4 2) 16(16 8] 4[4 2 'V

p2_L[2 12 -1]_1[8 -4 _1[2 -1
27164 2||-4 2] 16|-16 8] 4|4 2

= P;.




For property (iii) we have

APl:i_th 1 _z21 ;}:}1[162 2]
PlA:i:i ; _}1 ﬂ 2411[162 g]
ae=le 1) |5 5 )=a
P % Rl Y

= AP, = —% {24 _21] = \2P,



For property (iv) we have

P+ P, =

N e

Finally for property (v), the spectral decomposition, we have

3[2 1] 1[2 -1
AlP“LMP2_4[4 2}_4[—4 2]

-]

=A.



What questions do you have?



