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For A ∈ Mn(C) and λ ∈ σ(A), there exist Ak ∈ Mn(C), k ∈ Z,
(depending on λ) such that the resolvent of A as a Laurent series
about λ has the form

RA(z) =
∞∑

k=−∞
Ak(z − λ)k .

By the Laurent Expansion Theorem, we have for each k ∈ Z that

Ak =
1

2πi

‰
Γ

RA(z)

(z − λ)k+1
dz

for a positively oriented simple closed contour Γ enclosing λ but no
other element of σ(A).

The coefficient A−1 = Res(RA(z), λ) is the spectral projection Pλ.

We are going to discover the nature of the relationships that exist
among all the coefficient matrices Ak in Laurent series for RA(z)
about λ.



Nota Bene 12.5.1. Be aware that Ak is a coefficient matrix in a
Laurent series

RA(z) =
∞∑

k=−∞
Ak(z − λ)k ,

while Ak is the kth power of A.

(Horrible) Notation. For n ∈ Z, define

ηn =

{
1 if n ≥ 0,

0 if n < 0.

This is a characteristic or indicator function on the set Z.



Lemma 12.5.2. For A ∈ Mn(C) and λ ∈ σ(A), let Γ and Γ′ be two
positively oriented simple closed contours in ρ(A) enclosing λ and
no other element of σ(A). Assume further that Γ is in the interior
of Γ′, that z ′ ∈ Γ′, and z ∈ Γ. Then for all m ∈ N there holds

(i)
1

2πi

‰
Γ
(z − λ)−m−1(z ′ − z)−1 dz = ηm(z ′ − λ)−m−1,

and for all n ∈ N there holds

(ii)
1

2πi

‰
Γ′

(z ′ − λ)−n−1(z ′ − z)−1 dz ′ = (1− ηn)(z − λ)−n−1.

[Draw the picture.]



What questions do you have?



Lemma 12.5.3. The matrix coefficients Ak in the Laurent
expansion

RA(z) =
∞∑

k=−∞
Ak(z − λ)k

about λ ∈ σ(A) satisfy

AmAn = (1− ηm − ηn)Am+n+1 .

Remark 12.5.4. Since Pλ = A−1, Lemma 12.5.3 gives another
proof that

P2
λ = A−1A−1 = (1− η−1 − η−1)A−1−1+1 = A−1 = Pλ.

Notation. To express the relationships that exists among the
coefficient matrices Ak in the Laurent series of RA(z) about λ, we
define

Dλ = A−2 and Sλ = A0.



Lemma 12.5.5. For A ∈ Mn(C) and λ ∈ σ(A), there holds

(i) A−n = Dn−1
λ for all n ≥ 2,

(ii) An = (−1)nSn+1
λ for all n ≥ 1,

(iii) the spectral projection Pλ commutes with Dλ and with Sλ,
where in particular,

PλDλ = Dλ, PλSλ = 0,

(iv) The Laurent series of RA(z) about λ is

RA(z) =
Pλ

z − λ
+
∞∑
k=1

Dk
λ

(z − λ)k+1
+
∞∑
k=0

(−1)k(z − λ)kSk+1
λ ,

(v) the spectral projection Pλ commutes with RA(z), where in
particular

PλRA(z) =
Pλ

z − λ
+
∞∑
k=1

Dk
λ

(z − λ)k+1
.

The proof of these is HW (Exercises 12.23, 12.24, and 12.25).



Remark. The Laurent series for RA(z) about λ ∈ σ(A) is
completely determined by the three matrices

Pλ = A−1, Dλ = A−2, and Sλ = A0,

according to Lemma 12.5.5 part (iv):

RA(z) =
Pλ

z − λ
+
∞∑
k=1

Dk
λ

(z − λ)k+1
+
∞∑
k=0

(−1)k(z − λ)kSk+1
λ .

Second Reading Quiz Question: The Laurent series of RA(z) about
λ ∈ σ(A) is determined by three matrices?

True

First Reading Quiz Question: How it is possible to write the
Laurent series for the resolvent of A about an eigenvalue λ of A
using only the spectral projections and Dλ?



What questions do you have?



A Long Example. We verify some parts of Lemma 12.5.5 for the
linear operator

A =

6 1 0
0 6 7
0 0 4


and use other parts of Lemma 12.5.5 to compute Laurent series
expansion of RA(z) about λ = 6.

We computed previously that RA(z) is

1

z − 6

1 0 −7/4
0 1 7/2
0 0 0

+
1

(z − 6)2

0 1 7/2
0 0 0
0 0 0

+
1

z − 4

0 0 7/4
0 0 −7/2
0 0 1

 ,
so that the spectral projections are

P6 =

1 0 −7/4
0 1 7/2
0 0 0

 and P4 =

0 0 7/4
0 0 −7/2
0 0 1

 .



Also from the partial fraction decomposition of RA(z) we have

D6 =

0 1 7/2
0 0 0
0 0 0

 and D4 = 0,

the latter since there is no 1/(z − 4)2 term in the partial fraction
decomposition.

We may thus neatly write the partial fraction decomposition of the
resolvent of A as

RA(z) =
P6

z − 6
+

D6

(z − 6)2
+

P4

z − 4
,

where

P6 =

1 0 −7/4
0 1 7/2
0 0 0

 and P4 =

0 0 7/4
0 0 −7/2
0 0 1

 .



Part (iii) of Lemma 12.5.5 states that Pλ commutes with Dλ and
Sλ, and that PλDλ = DλPλ = Dλ and PλSλ = SλPλ = 0.

Verifying a piece of part (iii) of Lemma 12.5.5, the matrices P6

and D6 satsify

P6D6 =

1 0 −7/4
0 1 7/2
0 0 0

0 1 7/2
0 0 0
0 0 0


=

0 1 7/2
0 0 0
0 0 0

 = D6

=

0 1 7/2
0 0 0
0 0 0

1 0 −7/4
0 1 7/2
0 0 0

 = D6P6.



The matrix D6 satisfies

D2
6 =

0 1 7/2
0 0 0
0 0 0

0 1 7/2
0 0 0
0 0 0

 = 0.

Thus Dk
6 = 0 for all k ≥ 2, so that the principle part of the

Laurent series satisfies

P6

z − 6
+
∞∑
k=1

Dk
6

(z − 6)k+1
=

P6

z − 6
+

D6

(z − 6)2
.

The resolvent RA(z) has a pole of order 2 are the isolated
singularity λ = 6.

We could compute S6 by writing 1/(z − 4) in

RA(z) =
P6

z − 6
+

D6

(z − 6)2
+

P4

z − 4

as a geometric series in z − 6, but we won’t this time.



What questions do you have?

We will proceed with the long example.



Instead we make use of parts (iv) and (v) of Lemma 12.5.5 to find
S6 (and use the geometric series to verify the work).

First, by part (iv) we have

∞∑
k=0

(−1)k(z − 6)kSk+1
6 = RA(z)−

(
P6

z − 6
+

D6

(z − 6)2

)
.

By part (v) we have

RA(z)P6 =
P6

z − 6
+

D6

(z − 6)2
.

Combining these gives

∞∑
k=0

(−1)k(z−6)kSk+1
6 = RA(z)−RA(z)P6 = RA(z)(I−P6) = RA(z)P4

by the completeness P6 + P4 = I .

We will determine what RA(z)P4 is.



Recalling that

RA(z) =
P6

z − 6
+

D6

(z − 6)2
+

P4

z − 4

we have in the product

RA(z)P4 =
P6P4

z − 6
+

D6P4

(z − 6)2
+

P2
4

z − 4

that P6P4 = 0 and P2
4 = P4, but what is D6P4?

It is 0 1 7/2
0 0 0
0 0 0

0 0 7/4
0 0 −7/2
0 0 1

 = 0.

Is this just a coincidence?

With D4 = 0, it is not according to part (v) of Lemma 12.5.5
which gives

RA(z)P4 =
P4

z − 4
+
∞∑
k=1

Dk
4

(z − λ)k+1
=

P4

z − 4
,



and in comparison with

RA(z)P4 =
P6P4

z − 6
+

D6P4

(z − 6)2
+

P4

z − 4

implies that D6P4 = 0.

The point of all of this is that we have

∞∑
k=0

(−1)k(z − 6)kSk+1
6 =

P4

z − 4
.

Evaluating this equality at z = 6 gives

S6 =
P4

2
.

Since P6P4 = 0 (independence of the spectral projections), we
verify the remaining piece of part (iii) of Lemma 12.5.5 in that

P6S6 = S6P6 = 0.



Since P2
4 = P4, we obtain

Sk+1
6 = (1/2)k+1P4,

thus giving the Laurent series of the resolvent about λ = 6, namely

RA(z) =
D6

(z − 6)2
+

P6

z − 6
+ P4

∞∑
k=0

(−1)k(z − 6)k

2k+1
.

[This is how the Laurent series about λ can be written in terms of
the spectral projections and Dλ. Answers to your homework
problems should look like this.]

Using the geometric series one can verify that

∞∑
k=0

(−1)k(z − 6)k

2k+1
=

1

2

∞∑
k=0

(
6− z

2

)k

=
1

2

(
1

1− 6−z
2

)

=
1

2

(
2

2− (6− z)

)
=

1

2− (6− z)
=

1

z − 4
.



What questions do you have?

To the next example.



Not as long of an Example (in lieu of 12.5.6). We compute the
Laurent series

RA(z) =
∞∑

k=−∞
Ak(z − 2)k

for the linear operator

A =


2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5


about its eigenvalue λ = 2.

To this end we need to determine P2, D2, and S2.



We computed previously that

RA(z) =
1

z − 2


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

+
1

(z − 2)2


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0



+
1

(z − 2)3


0 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0

+
1

z − 5


0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

 .
The spectral projections are

P2 =


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

 and P5 =


0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

 .



We also have

D2 = A−2 =


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0


and by way of verification that

D2
2 =


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0




0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0



=


0 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0

 = A−3.



To find S2 we have by part (iv) of Lemma 12.5.5 that

∞∑
k=0

(−1)k(z − 2)kSk+1
2 = RA(z)−

(
P2

z − 2
+

D2

(z − 2)2

)
and by part (v) of Lemma 12.5.5 that

P2RA(z) =
P2

z − 2
+

D2

(z − 2)2
.

Combining these gives

∞∑
k=0

(−1)k(z − 2)kSk+1
2 = RA(z)− P2RA(z) = (I − P2)RA(z)

= RA(z)P5 =
P5

z − 5
,

where we have used the completeness P2 + P5 = I and part (iv) of
Lemma 12.5.5 applied to λ = 5.

Evaluation of the equality at z = 2 gives S2 = −(1/3)P5.



The Laurent series for the resolvent of A around λ = 2 is

RA(z) =
D2

2

(z − 2)3
+

D2

(z − 2)2
+

P2

z − 2
− P5

∞∑
k=0

(z − 2)k

3k+1
.

Using the geometric series we can verify that

−
∞∑
k=0

(z − 2)k

3k+1
=

1

z − 5
.

We mentioned previously that A 6= 2P2 + 5P5, i.e.,
2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

 6= 2


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

+ 5


0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1


since A is not semisimple, but that something else was happening.



By including D2, the spectral decomposition of A is

2P2 + D2 + 5P2

because

2P2 + D2 + 5P5

= 2


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

+


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0

+ 5


0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1



=


2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5


= A.



As we will see in the next section, the spectral decomposition of
A ∈ Mn(C) is

A =
∑

λ∈σ(A)

(
λPλ + Dλ

)
.

Finding the spectral projections Pλ (or eigenprojections because as
we will see R(Pλ) = Eλ) and, and as they will be called, the
eigennilpotents Dλ, is achieved by the partial fraction
decomposition of the resolvent RA of A.



What questions do you have?


