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We are now in the position of proving, for every linear operator

A 2 Mn(C), the existence of the spectral decomposition

A =

X

�2�(A)

�
�P� + D�)

where

• P� is the matrix coe�cient A�1 in the Laurent series of RA(z)
about �,

• R(P�) = E�, the generalized eigenspace of A for �, and

• D� is the matrix coe�cient A�2 in the Laurent series of

RA(z) about �.

We have seen this spectral decomposition in two examples already.

The computation tool for finding the spectral decomposition of A
is the method of partial fractions applied to the nonzero entries of

the resolvent

RA(z) = (zI � A)�1.

Yes, it is that straightforward.
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Lemma 12.6.1. For A 2 Mn(C) and � 2 �(A), the linear operator

D� 2 Mn(C) satisfies

D� = (A� �I )P�.

Moreover, the spectral radius of D� is zero, i.e., r(D�) = 0.

Note. The equation

D� = (A� �I )P�

holds if and only if

AP� = �P� + D�

holds.

Note. Since

r(D�) = sup{|µ| : µ 2 �(D�)} = 0

the only eigenvalue of D� is 0 and it has an algebraic multiplicity

of n.
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Example (in lieu of 12.6.2). We verify

D� = (A� �I )P�

for

A =

2

664

2 1 0 0

0 2 1 0

0 0 2 3

0 0 0 5

3

775

and � = 2.

Recall that

P2 =

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1

0 0 0 0

3

775 and D2 =

2

664

0 1 0 �1/3
0 0 1 �1

0 0 0 0

0 0 0 0

3

775 .
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For the verification of

D� = (A� �I )P�

for � = 2 we have

(A� 2I )P2 =

2

664

0 1 0 0

0 0 1 0

0 0 0 3

0 0 0 3

3

775

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1

0 0 0 0

3

775

=

2

664

0 1 0 �1/3
0 0 1 �1

0 0 0 0

0 0 0 0

3

775

= D2.

This implies that

AP2 = 2P2 + D2.
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What questions do you have?

Remark. Recall that a matrix B 2 Mn(C) is called nilpotent if

there is l 2 N such that B l
= 0.



Lemma 12.6.3. A matrix B 2 Mn(C) satisfies r(B) = 0 if and

only if B is nilpotent.

Proof. Suppose that r(B) = 0.

Then �(B) = {0}, i.e., every eigenvalue of B is zero.

Hence the characteristic polynomial of B is p(z) = zn.

By the Cayley-Hamilton Theorem, we have Bn
= p(B) = 0, which

says that B is nilpotent.

Now suppose that B is nilpotent.

Then there exists l 2 N such that B l
= 0.

This implies that Bk
= 0 for all k � l .

Hence for any matrix norm k · k we have kBkk = 0 for all k � l .

This implies that r(B) = limk!1 kBkk1/k = 0.
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Remark. Lemma 12.6.1,

r(D�) = 0,

and Lemma 12.6.3,

r(B) = 0 , B is nilpotent,

show that the linear operator

D� is nilpotent.

Definition. For A 2 Mn(C) and � 2 �(A), the nilpotent linear

operator D� is called the eigennilpotent of A associated with the

eigenvalue �.

Note. The presence of a nonzero D� in the spectral decomposition

indicates the deviation of the linear operator from being

semisimple.
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Remark 12.6.4. Recall that the order of a nilpotent B 2 Mn(C) is
the smallest l 2 N such that B l

= 0.

For a nilpotent B of order l , each Bk
with 0  k < l , we have

Bk 6= 0 so that N (Bk
) is a proper subspace of Cn

.

Since B l
= B l+1

= 0, then

N (B l
) = N (B l+1

) = Cn,

and so ind(B) = l , i.e., the order of B is the same as the index of
B .

Second Reading Quiz Question: The index of a nilpotent matrix is

the same as its order.

True

From Exercise 12.6, the index of a nilpotent B is no bigger than n,
meaning that ind(B)  n.
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What questions do you have?



Proposition 12.6.5. For A 2 Mn(C) and � 2 �(A), the order m�

of the eigennilpotent D� of A satisfies

m�  dim(R(P�)).

Proof. By Lemma 12.5.5 part (iii) we have D� = P�D� = D�P�.

We show (a) R(P�) is D�-invariant and (b) R(D�) ⇢ R(P�).

To show (a) R(P�) is D�-invariant, let y 2 R(P�).

Then there exists x 2 Cn
such that y = P�x.

Hence D�y = D�P�x = P�(D�x) 2 R(P�) ) R(P�) is

D�-invariant.

To show (b) R(D�) ⇢ R(P�), let y 2 R(D�).

Then there is x 2 Cn
such that y = D�x.

Hence y = D�x = P�(D�x) 2 R(P�) ) R(D�) ⇢ R(P�) .
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We can thus consider D� = D�P� as a linear operator on R(P�).

That m�  dim(R(P�)) now follows from Exercise 12.6, i.e.,

ind(D�)  dim(R(P�)). ⇤
Example. We illustrate R(D�) ⇢ R(P�) for

A =

2

664

2 1 0 0

0 2 1 0

0 0 2 3

0 0 0 5

3

775

for � = 2 where

P2 =

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1

0 0 0 0

3

775 and D2 =

2

664

0 1 0 �1/3
0 0 1 �1

0 0 0 0

0 0 0 0

3

775 .

Here

R(P2) = span(e1, e2, e3) � R(D2) = span(e1, e2).
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Remark 12.6.6. Proposition 12.6.5 implies that the resolvent

RA(z) has no essential singularities.

So RA(z) is meromorphic on ⇢(A).

More precisely, part (iv) of Lemma 12.5.5 simplifies to

RA(z) =
P�

z � �
+

m��1X

k=1

Dk
�

(z � �)k+1
+

1X

k=0

(�1)
k
(z � �)kSk+1

�

and part (v) of Lemma 12.5.5 simplifies to

RA(z)P� =
P�

z � �
+

m��1X

k=1

Dk
�

(z � �)k+1
.

Note. The isolated singularity of RA(z) at z = � is a simple pole if

D� = 0 or is a pole of order m� � 2 if D� 6= 0.

D
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What questions do you have?



Remark. We now turn attention to showing that

R(P�) = E�,

and developing some results to be used in the next section to

establish uniqueness of the spectral decomposition.

We notice that if y 2 R(P�), then (�I � A)y 2 R(P�) because for

y = P�x we have

(�I � A)y = (�I � A)P�x = D�(�x) 2 R(D�),

where we are using

D� = (A� �I )P� = �(�I � A)P�,

and, as shown in the proof of Proposition 12.6.5, that

R(D�) ⇢ R(P�), whence that

(�I � A)y 2 R(P�).
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The converse is also true as the next result asserts.

Lemma 12.6.7. For A 2 Mn(C), let � 2 �(A) and y 2 Cn
. If

(�I � A)y 2 R(P�), then y 2 R(P�).

Remark 12.6.8. The proof of Lemma 12.6.7 only depends on the

following properties of the eignprojections Pµ and eigennilpotents

Dµ:

(1)

X

µ2�(A)

Pµ = I ,

(2) PµPµ0 = 0 for µ 6= µ0
,

(3) DµPµ = Dµ, and

(4) APµ = µPµ + Dµ for all µ 2 �(A).

This is important for the uniqueness of the spectral decomposition.

Theorem 12.6.9. For A 2 Mn(C) and � 2 �(A), there holds

R(P�) = E�.



Idea of Proof. By repeated use of Lemma 12.6.7,

(�I � A)y 2 R(P�) ) y 2 R(P�),

we obtain E� ⇢ R(P�) as follows.

Recall that E� = N ((�I � A)k�) where k� = ind(�I � A).

For y 2 N ((�I � A)k�), we have

(�I � A)((�I � A)k��1y) = (�I � A)k�y = 0 2 R(P�),

so that

(�I � A)k��1y 2 R(P�).

Continue until we reach

(�I � A)y 2 R(P�) ) y 2 R(P�).

This gives E� ⇢ P�.
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To get E� = R(P�) for all � 2 �(A), the idea is to establish

Cn
=

M

�2�(A)

R(P�)

and compare this with the already established

Cn
=

M

�2�(A)

E�.

The inclusions E� ⇢ P� force the equalities E� = R(P�) for all

� 2 �(A).

The direct sum decomposition with R(P�) is established using

their completeness and independence.

Remark 12.6.10. The proof of Theorem 12.6.9 only depends

properties of the projections listed in Remark 12.6.8. This is

important in the next section when we prove the uniqueness of the

spectral decomposition.

o
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What questions do you have?



Theorem 12.6.12 (Spectral Decomposition Theorem). For
A 2 Mn(C), and � 2 �(A), let P� be the spectral projection of A
associated to �, and let D� be the eigennilpotent of A associated

to � with its order m�. The resolvent of A takes the form

RA(z) =
X

�2�(A)

"
P�

z � �
+

m��1X

k=1

Dk
�

(z � �)k+1

#
,

and there holds the spectral decomposition

A =

X

�2�(A)

�
�P� + D�

�
.

Proof. From Lemma 12.5.5 part (v) and the nilpotency of D� we

have

RA(z)P� =
P�

z � �
+

m��1X

k=1

Dk
�

(z � �)k+1
.

0
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Combining this with the completeness of the spectral projections

gives

RA(z) = RA(z)I

= RA(z)
X

�2�(A)

P�

=

X

�2�(A)

RA(z)P�

=

X

�2�(A)

"
P�

z � �
+

m��1X

k=1

Dk
�

(z � �)k+1

#
.

Recall that AP� = �P� + D�.

Combining this with the completeness of the spectral projections

gives

A = AI = A
X

�2�(A)

P� =

X

�2�(A)

AP� =

X

�2�(A)

�
�P� + D�

�
.

To

0



First Reading Quiz Question: Comment on the relationship

between the form of the resolvent presented in the Spectral

Decomposition Theorem 12.6.12,

RA(z) =
X

�2�(A)

"
P�

z � �
+

m��1X

k=1

Dk
�

(z � �)k+1

#
,

and the partial fraction decomposition of the resolvent.

Remark. The form of the resolvent stated in the Spectral

Decomposition Theorem is the PRECISELY form we have already

been getting by using the partial fraction decompositions for the

rational function entries of the resolvent.



What questions do you have?



Example (in lieu of 12.6.13). Find the spectral decomposition for

the linear operator

A =

2

4
�1 11 �3

�2 8 �1

�1 5 0

3

5 .

The characteristic polynomial of A is

det(zI � A) = z3 � 7z2 + 16z � 12 = (z � 2)
2
(z � 3).

The adjugate of zI � A is

adj(zI � A) =

2

4
z2 � 8z + 5 11z � 15 �3z + 13

�2z + 1 z2 + z � 3 �z + 5

�z � 2 5z � 6 z2 � 7z + 14

3

5 .

Performing nine partial fraction decompositions (one for each

entry) the resolvent is

1

z � 2

2

4
11 �18 �4

5 �8 �2

5 �9 �1

3

5+ 1

(z � 2)2

2

4
7 �7 �7

3 �3 �3

4 �4 �4

3

5+ 1

z � 3

2

4
�10 18 4

�5 9 2

�5 9 2

3

5 .



From this we have

P2 =

2

4
11 �18 �4

5 �8 �2

5 �9 �1

3

5 , D2 =

2

4
7 �7 �7

3 �3 �3

4 �4 �4

3

5 , P3 =

2

4
�10 18 4

�5 9 2

�5 9 2

3

5 ,

whence the spectral decomposition is

A = 2P2 + D2 + 3P3.

From this spectral decomposition we can finding “quicker” means

of computing powers of A, such as

A2
= (2P2 + D2 + 3P3)(2P2 + D2 + 3P3)

= 4P2
2 + 2P2D2 + 6P2P3 + 2D2P2 + D2

2 + 3D2P3

+ 6P3P2 + 3P3D2 + 9P2
3

= 4P2 + 4D2 + 9P3.

Not only can we take powers of A, we can also take holomorphic

images of A, and get expressions that look an awful lot like

spectral decompositions!
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Corollary 12.6.14. For A 2 Mn(C), let f be holomorphic complex

valued function defined on a simply connected open set containing

�(A). If for � 2 �(A), the complex constants an,� are the

coe�cients in the power series expansion of f about �, i.e.,

f (z) = f (�) +
1X

n=1

an,�(z � �)n,

then

f (A) =
X

�2�(A)

"
f (�)P� +

m��1X

k=1

ak,�D
k
�

#
.

In the case that A is semisimple the expression simplifies to

f (A) =
X

�2�(A)

f (�)P�.

p
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Example (in lieu of 12.6.15). In the previous example, we used

the spectral decomposition

A = 2P2 + D2 + 3P3

to directly compute

A2
= 4P2 + 4D2 + 9P3.

We will use Corollary 12.6.14 to compute this by finding the

coe�cients of the power series expansion of the square function

expanded about � = 2:

f (z) = z2 = (z�2+2)
2
= ((z�2)+2)

2
= 4+4(z�2)+(z�2)

2.

The Taylor series coe�cients of f (z) about � = 2 are

a0,2 = 4, a1,2 = 4, a2,2 = 1, ak,2 = 0 for all k � 3.
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Since D3 = 0 we do not need the Taylor coe�cients of f (z) = z2

expanded about � = 3.

By Corollary 12.6.14, using a1,2 = 4, we have

A2
= f (A)

=

X

�2�(A)

"
f (�)P� +

m��1X

k=1

ak,�D
k
�

#

= 2
2P2 + 4D2 + 3

2P3

= 4P2 + 4D2 + 9P3.

This agrees with what we computed earlier, but this is much faster.
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What questions do you have?


