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Recall the Semisimple Spectral Mapping Theorem 4.3.12 which

states that for a semisimple A 2 Mn(C) and a polynomial p 2 C[x ],
the set of eigenvalues of the the linear operator p(A) is precisely

p(�(A)) = {p(�) : � 2 �(A)}.

We extend this result in two ways:

• to all linear operators A 2 Mn(C), and
• to all complex-valued functions f holomorphic on a simply

connected open set containing the spectrum of a given linear

operator.

This gives the Spectral Mapping Theorem.

Additionally we prove the uniqueness of the spectral decomposition

of a linear operator

A =

X

�2�(A)

�
�P� + D�

�

for eigenprojections P�, with R(P�) = E�, and eigennilpotents D�.



This shows that the conclusion of Corollary 12.6.14,

f (A) =
X

�2�(A)

"
f (�)P� +

m��1X

k=1

ak,�D
k
�

#
,

is the spectral decomposition of f (A).

Somewhere in the expression for f (A) are the eigenprojections and

the eigennilpotents for f (A) for the eigenvalues of f (A), and we

will see exactly what they are by means of the Spectral Mapping

Theorem.

Finally we use the spectral decomposition theory to develop the

power method, a means of computing the eigenvector of a linear

operator that has a dominant eigenvalue.



Theorem 12.7.1 (Spectral Mapping Theorem). For A 2 Mn(C),
if f is holomorphic on an open disk containing �(A), then

�(f (A)) = f (�(A)) .

Moreover, if x 2 Cn \ {0} is an eigenvector of A corresponding to

� 2 �(A), then x is an eigenvector of f (A) corresponding to f (�),
i.e., for x 6= 0,

Ax = �x ) f (A)x = f (�)x.

Second Reading Quiz Question. If A 2 Mn(C) and � 2 �(A), then
sin(�) 2 �(sin(A)).

True

The function f (z) = sin(z) is entire, hence holomorphic on the

open set C containing �(A) for any A 2 Mn(C), so by the Spectral

Mapping Theorem sin(�) belongs to �(sin(A)).
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Example (in lieu of 12.7.2). Recall that the eigenvalues and

eigenvectors of

A =


1 1

4 1

�

are

�1 = 3, ⇠1 =


1

2

�
and �2 = �1, ⇠2 =


1

�2

�
.

The solution of the initial value problem x0 = Ax, x(0) = x0 is

x(t) = exp(tA)x0.

For each constant ↵ 2 C, the function f↵(z) = exp(↵z) is entire.

By the Spectral Mapping Theorem, we have

�(f↵(A)) = f↵(�(A)) = {e↵�1 , e↵�2} = {e3↵, e�↵},

and the eigenvectors ⇠1, ⇠2 of A are eigenvectors of

a
to 6



f↵(A) = exp(↵A)

corresponding to e3↵ and e�↵
respectively.

Restricting ↵ 2 R, say ↵ = t, we obtain the eigenvalues

e3t and e�t

with their corresponding eigenvectors ⇠1 and ⇠2 for exp(tA).

In particular, since exp(tA)⇠2 = e�t⇠2 for each t � 0, we have

lim
t!1

exp(tA)⇠2 = lim
t!1

e�t⇠2 = 0.

Similarly we would get

lim
t!�1

exp(tA)⇠1 = lim
t!�1

e3t⇠1 = 0.

The point of all of this is that we can compute these limits by

means of the Spectral Mapping Theorem without explicitly

computing exp(tA).

expCta

s
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What questions do you have?



Recall the spectral decomposition

A =

X

�2�(A)

�
�P� + D�

�
.

The following gives its uniqueness.

Theorem 12.7.5. For A 2 Mn(C), if for each � 2 �(A) there is a

projection Q� 2 Mn(C) and a nilpotent C� 2 Mn(C) satisfying
(i) Q�Qµ = 0 for all µ 2 �(A) with � 6= µ,

(ii) Q�C� = C�Q� = C�,

(iii) QµC� = C�Qµ = 0 for all µ 2 �(A) with µ 6= �,

(iv)
P

�2�(A)Q� = I , and

(v) A =
P

�2�(A)
�
�Q� + C�

�

then for each � 2 �(A) the projection Q� is the eigenprojection P�

associated to A, and the nilpotent C� is the eigennipotent D�

associated to A.

O
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Sketch of Proof. For every µ 2 �(A) we have by item (v), the

“spectral decomposition” of A, and items (i), (ii), and (iii) that

AQµ =

0

@
X

�2�(A)

�
�Q� + C�

�
1

AQµ

=

X

�2�(A)

�
�Q�Qµ + C�Qµ

�

= µQ2
µ + CµQµ

= µQµ + Cµ

This implies that

Cµ = (A� µI )Qµ.

Since by Lemma 12.6.1

Dµ = (A� µI )Pµ,

we get Dµ = Cµ by showing Pµ = Qµ for all µ 2 �(A).

It u fixed
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The proofs of Lemma 12.6.7 and Theorem 10.6.9 that give

E� = R(P�) carry over to give

Eµ = R(Qµ).

[Recall that in Section 10.6, Lemma 12.6.7 and Theorem 12.6.9

were consequences of the stated properties of projections and

nilpotents, not specifically the projections and nilpotents that came

from the resolvent.]

For v 2 Cn
and � 2 �(A) we have

Q�v 2 E� = R(P�).

For µ 2 �(A) \ {�} we have

PµP� = 0

so that since Q�v 2 R(P�), we have

PµQ�v = 0.

Since R(Qµ) = Eµ and Pµ is a projection with the same range as

Qµ we have that

O IDI
I
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PµQµv = Qµv

for every v 2 Cn
by Lemma 12.1.3.

Using item (v), the completeness of the projections Q�, � 2 �(A),
we have for a fixed µ 2 �(A) that

Pµv = PµIv

= Pµ

0

@
X

�2�(A)

Q�v

1

A

=

X

�2�(A)

PµQ�v

= PµQµv

= Qµv.

This implies that Pµ = Qµ.

2
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What questions do you have?



Theorem 12.7.6 (Mapping the Spectral Decomposition). Let
A 2 Mn(C) and f be holomorphic on a simply connected open set

U containing �(A). If for each � 2 �(A) we have the Taylor series

f (z) = f (�) +
1X

k=1

an,�(z � �)k ,

then

f (A) =
X

�2�(A)

 
f (�)P� +

m��1X

k=1

ak,�D
k
�

!

is the spectral decomposition of f (A), i.e., for each ⌫ 2 �(f (A))
the eigenprojection for f (A) is given by

X

µ2�(A),f (µ)=⌫

Pµ,

and the corresponding eigennilpotent D⌫ is given by

X

µ2�(A),f (µ)=⌫

mµ�1X

k=1

ak,µD
k
µ .
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Example (in lieu of 12.7.7). Find the eigenprojections and

eigennilpotents of the square of

A =

2

66664

1 1 0 0 0

0 1 0 0 1

0 0 �1 1 0

0 0 0 �1 1

0 0 0 0 2

3

77775

using the formulas in Theorem 12.7.6.

From the partial fraction decomposition of the entries of the

resolvent RA(z) we obtain

P1 =

2

66664

1 0 0 0 �1

0 1 0 0 �1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

77775
, D1 =

2

66664

0 1 0 0 �1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

77775
,

091 4 1,2



P�1 =

2

66664

0 0 0 0 0

0 0 0 0 0

0 0 1 0 �1/9
0 0 0 1 �1/3
0 0 0 0 0

3

77775
, D�1 =

2

66664

0 0 0 0 0

0 0 0 0 0

0 0 0 1 �1/3
0 0 0 0 0

0 0 0 0 0

3

77775
,

P2 =

2

66664

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1/9
0 0 0 0 1/3
0 0 0 0 1

3

77775
.

The spectrum of A is �(A) = {1,�1, 2} and the spectral

decomposition is

A = P1 + D1 � P�1 + D�1 + 2P2.

Since f (z) = z2 is entire, we have by the Spectral Mapping

Theorem that

�(f (A)) = f (�(A)) = {12, (�1)
2, 22} = {1, 4}.



What questions do you have before we proceed?



The eigenprojection for f (A) corresponding to ⌫ = 1 2 �(f (A)) is

X

µ2�(A),f (µ)=1

Pµ = P1 + P�1

=

2

66664

1 0 0 0 �1

0 1 0 0 �1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

77775
+

2

66664

0 0 0 0 0

0 0 0 0 0

0 0 1 0 �1/9
0 0 0 1 �1/3
0 0 0 0 0

3

77775

=

2

66664

1 0 0 0 �1

0 1 0 0 �1

0 0 1 0 �1/9
0 0 0 1 �1/3
0 0 0 0 0

3

77775
.

The eigenprojection for f (A) corresponding ⌫ = 4 2 �(f (A)) is

4P2.

AZ
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To get the eigennilpotent for f (A) corresponding to ⌫ = 1 we

compute the Taylor series expansions of

f (z) = z2

about z = 1 and about z = �1:

z2 = (1 + z � 1)
2

= (1 + (z � 1))
2

= 1 + 2(z � 1) + (z � 1)
2,

z2 = (�1 + z + 1)
2

= (�1 + (z + 1))
2

= 1�2(z + 1) + (z + 1)
2.

Here we have

a1,1 = 2,

a1,�1 = �2.



The eigennilpotent for f (A) corresponding to ⌫ = 1 is

X

µ2�(A),f (µ)=1

mµ�1X

k=1

ak,µD
k
µ

= 2D1 � 2D�1

=

2

66664

0 2 0 0 �2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

77775
�

2

66664

0 0 0 0 0

0 0 0 0 0

0 0 0 2 �2/3
0 0 0 0 0

0 0 0 0 0

3

77775

=

2

66664

0 2 0 0 �2

0 0 0 0 0

0 0 0 �2 2/3
0 0 0 0 0

0 0 0 0 0

3

77775
.

i
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We can verify all of the eigenprojections and eigennilpotents for

f (A) = A2

by directly squaring the spectral decomposition of A:

A2
= (P1 + D1 � P�1 + D�1 + 2P2)(P1 + D1 � P�1 + D�1 + 2P2)

= P1 + 2D1 + P�1 � 2D�1 + 4P2

= P1 + P�1 + 2D1 � 2D�1 + 4P2,

where we use

P2
1 = P1, P2

�1 = P�1, P2
2 = P2, D2

1 = 0, D2
�1 = 0,

and

P1D�1 = 0, P�1D1 = 0, etc.



What questions do you have?



Example (in lieu of 12.7.7). Use Theorem 12.7.6 to find the

inverse of the invertible

A =

2

4
�1 11 �3

�2 8 �1

�1 5 0

3

5 .

Recall from last time that the spectral decomposition is

A = 2P2 + D2 + 3P3

where

P2 =

2

4
11 �18 �4

5 �8 �2

5 �9 �1

3

5 , D2 =

2

4
7 �7 �7

3 �3 �3

4 �4 �4

3

5 , P3 =

2

4
�10 18 4

�5 9 2

�5 9 2

3

5 .

To find the inverse of A we use Taylor series expansions of function

f (z) = z�1
about � 2 �(A) = {2, 3}.

T p



Since

f (l)(z) =
(�1)

l l !

z l+1
,

the Taylor series of f (z) about � 6= 0 is

f (z) =
1X

l=0

(�1)
l

�l+1
(z � �)l .

We identify

al ,� =
(�1)

l

�l+1
.

By Theorem 12.7.6 we obtain

A�1
= f (A) =

X

�2�(A)

 
f (�)P� +

m��1X

l=1

al ,�D
l
�

!

=
1

2
P2 �

1

4
D2 +

1

3
P3 =

2

4
5/12 �5/4 13/12
1/12 �1/4 5/12
�1/6 �1/2 7/6

3

5 .

[Computed and verified by Maple.]
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The power method is algorithm to find an eigenvector for certain

type of linear operator on a finite dimensional vector space.

Definition. An eigenvalue � 2 �(A) is called semisimple if the

geometric multiplicity of � equals its algebraic multiplicity.

Definition. An eigenvalue � 2 �(A) is called dominant if for all

µ 2 �(A) \ {�} there holds

|�| > |µ|.

Theorem 12.7.8. For A 2 Mn(C), suppose that 1 2 �(A) is
semisimple and dominant. If v 2 Cn

satisfies P1v 6= 0, then for any

matrix norm k · k on Mn(C), there holds

lim
k!1

kAkv � P1vk = 0.

It is HW (Exercise 12.34) to extend this result to when the

dominant eigenvalue is something other than � = 1.

na
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First Reading Quiz Question. Geometrically what is the Power

Method doing?

Remark. The power method consist in making a good initial guess

v for an eigenvector corresponding to the dominant semisimple

eigenvalue 1.

The “good” part of the initial guess is that P1v 6= 0, because by

the semisimpleness of � = 1 the image P1v 2 E1 \ {0} is an

eigenvector.

Although v is not necessarily an eigenvector, its iterates Akv
converge in any matrix norm to the eigenvector P1v and the rate

of convergence is determined by the dominance of the dominant

semisimple eigenvalue. [Draw a picture.]



What questions do you have?



Example (in lieu of 12.7.9). The linear operator

A =

2

4
1/4 3/4 0

0 1 0

0 0 1/4

3

5

is semisimple with spectrum

�(A) = {1, 1/4}

where 1/4 has algebraic multiplicity 2.

This means that eigenvalue 1 is semisimple and dominant.

To find an eigenvector corresponding to eigenvalue 1 by the power

method we start with the initial guess

v =

2

4
1

1

1

3

5 .
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Then

Av =

2

4
1/4 3/4 0

0 1 0

0 0 1/4

3

5

2

4
1

1

1

3

5 =

2

4
1

1

1/4

3

5 ,

A2v =

2

4
1

1

1/16

3

5 , A3v =

2

4
1

1

1/64

3

5 , . . . ,

Akv =

2

4
1

1

1/4k

3

5!

2

4
1

1

0

3

5 .

Theorem 12.7.8 says this limit is an eigenvector of A corresponding

to the eigenvalue 1 and that it is the image of the eigenprojection

of the initial guess.

I
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From the partial fraction decomposition of the resolvent RA(z) we
have

P1 =

2

4
0 1 0

0 1 0

0 0 0

3

5 and P1/4 =

2

4
1 �1 0

0 0 0

0 0 1

3

5 .

We verify the spectral decomposition

2

4
1/4 3/4 0

0 1 0

0 0 1/4

3

5 = A = P1 + (1/4)P1/4.

The limit of Akv is indeed

P1v =

2

4
0 1 0

0 1 0

0 0 0

3

5

2

4
1

1

1

3

5 =

2

4
1

1

0

3

5 .

O O
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What questions do you have?


