Math 346 Lecture #1
6.1 The Directional Derivative

6.1.1 Tangent Vectors

Definition 6.1.1. For an open interval (a,b), a function f : (a,b) — R is differentiable
at x € (a,b) if the limit (of the rise over the run)

L f@ ) = f()
h—0 h

exists. When the limit exists we write f’(z) for this limit. If f is differentiable at every
point x € (a,b), we say f is differentiable on (a, b).

Remark 6.1.2. To see how that derivative m = f’(zy) defines a linear transformation
L(h) = mh that best approximates curve y(h) = f(xo+h) — f(zo) for h close to zero, we
recast the limit for f’(xg) in terms of the standard norm-induced metric d(z,y) = |z — y|
on R.

For every € > 0 there exists 6 > 0 such that for all 0 < |h| < § there holds

flao+h) = fa) |
h
or equivalently
‘f(l’o+h> — f(xo) — mh
5 < €.

This is precisely

‘—y(h) ;L L{h) ‘ <eor (m—eh=L(h)—eh <y(h) < L(h)+¢eh = (m+¢€)h.

This says that the graph of y(h) lies between the graphs of L(h) —eh and L(h) + €h over
the interval |h| < 6.

Definition 6.1.3. A curve v : (a,b) — R” is differentiable at to € (a, b) if

lim v(to 4+ h) — (o)
h—0 h

exists with respect to the standard norm-induced metrics on R and R"”, i.e., there is
a € R™ such that for every € > 0 there exists 6 > 0 for which for all 0 < |h| < § there
holds

< €.
2

h

If the limit exists, it is called the derivative of v at ¢, and denoted by +/'(t9). If v is
differentiable at every t € (a,b), then we say that + is differentiable on (a, b).

’7(750 +h) —(to) — ah

Remark 6.1.4. The derivative a = /(ty) defines a linear transformation L : R — R®
given by L(h) = ah that best approximates y(to + h) — y(to) for |h| small.



Proposition 6.1.5. A curve v : (a,b) — R™ represented in standard coordinates
as [v1(t),...,7(t)]" is differentiable at ¢, € (a,b) if and only if v; : (a,b) — R is
differentiable at ty for every ¢ = 1,...,n.

Proof. Since all norm-induced metrics on R™ are topologically equivalent, we can use any
norm-induced metric on R™ to compute the limit. We will use the metric induced by the
0O-NOTM.

Suppose the derivative 7.(o) exists for all i = 1,... n.

Then for € > 0 there exists d; > 0 such that for all 0 < || < J; there holds

o TN =l

< €.

Set § = min{dy,...,0,}
Then for all 0 < |h| < 6 there holds

to+h) —(t i(to+h) —7l(l
| o] = g, [P

This implies that v is differentiable at ;.
Now suppose that « is differentiable at ¢, with derivative 7/(to) = [y1, ..., yn]*
Then for € > 0 there exists 6 > 0 such that for all 0 < |h| < § there holds

7i(to ) 7(0)_%S 7 (to ) '7(0)_[y17'”,yn]T <e

h h N

This implies that ~; is differentiable at . O

Application 6.1.6. A twice-differentiable curve v : (a,b) — R™ can represent the
position of a particle as a function of time.

The derivative ~/(¢) is the instantaneous velocity (or simply the velocity), and its norm
|7/ (t)]|2 is the speed.

The second derivative +”(t) is the acceleration.

Often the motion of the particle is governed by a second-order differential equation,

Y'(t) = F(t,v(t),7' (1))
for a function F' : R x R™ x R" — R".

Definition 6.1.7. For a differentiable curve v : (a,b) — R", the tangent vector of v at
t € (a,b) is the derivative +'(t).

Example 6.1.8. A particle moving according to v(t) = [cost sint]T traces out the
circle of radius 1 centered at the origin.

The velocity 7/(t) = [—sint,cost]T is orthogonal to v(t), and the acceleration v"(t) =
[— cost, —sint]T satisfies the differential equation v"(t) = —v(t).

Proposition 6.1.9. If f,g: R — R" and ¢ : R — R are differentiable, and (-, -) is the
standard inner product on R", then



i) (f+9) = f+¢ (sum rule),
(i) (¢f) =¢'f+@f (product rule),
(i) (f,9)" = ([ 9) +(f,9), and

(iv) (f o) (t) =¢'(t)f(¢(t)) (chain rule).
The proof of this is HW (Exercise 6.2).
6.1.2 Directional Derivatives

The directional, or Gateaux, derivative is a generalization of the scalar-variable derivative
to multivariable functions.

It is obtained a function f : R™ — R™ by composing f, for a point € R™ and a vector
v € R", with a curve v(t) = x +tv in R", i.e., (fo~)(t) = f(x +tv), which gives a curve
in R™, and then taking the derivative with respect to ¢ and evaluating it at ¢ = 0.

Definition 6.1.10. Let f : R® — R™. The directional derivative of f at x € R" in the
direction v € R" is the limit
fa )~ f(@)

t—0 t

if it exists. The limit, denoted by D, f(x), assesses the change in the value of f in the
direction v from z.

Note. In multivariable calculus the vector v is always taken to be a unit vector when
computing the directional derivative. We will not assume this here.

Remark 6.1.11. We show in the next section for fixed  that v — D, f(z) is a linear
transformation from R™ to R™. For now we illustrate this by way of example.

Example (in lieu of 6.1.12). Let f: R? — R be given by f(z,y) = 2?y*. Then for

v = [v1,vo]T, we have

d
va(ﬂf,y) = Ef(x + tVlay + tV2)

t=0

;lt ((:C +tvi)?(y + tV2)3) .

= <2(x +tvi) (Vi) (y + tvo)? + (o + tvy)®3(y + th)Q(V2>>

= 2xy°vy + 32y’

t=0

We recognize this as the inner product of the vectors [2zy3, 3z%y*]T and v = [vy, vo]T,

and so D f(z,y) is indeed linear in v.
6.1.3 Partial Derivatives

Partial derivatives of a function f : R™ — R™ are the directional derivatives of f along
the standard basis vectors eq,...,e, of R".

Definition 6.1.13. Let f : R® — R™. The i*? partial derivative of f at a point z € R"

is the limit h
lim f(x + he;) — f(z)
h—0 h




if it exists, and is denoted by D;f(x).
Example 6.1.14. Unfortunately, the existence of all of the partial derivatives of a
function at a point does not imply the continuity of the function at that point. For
LY
fla,y)=q 2" +v°

we have

f(h,0)—f(0,0) . 0

Dy £(0,0) = lim h =iy =0
) 0,h) — f(0,0 .0

But along the sequence (1/n,2/n) which approaches the origin as n — oo we have

FUn2fn) = s =

while f(0,0) =0, so that f is not continuous at (0,0).

Remark 6.1.15. In the *" partial derivative D;f(z), it is only the i*® coordinate
that is changing while the other coordinates remain fixed. We may thus use all of the
differentiation rules for single-variable functions when computing D; f(z) as long as the
rules apply.



