Math 346 Lecture #2
6.2 The Fréchet Derivative in R"

Definition 6.2.1. Let U be an open subset of R”, x € U, and f : U — R™. We say f
is Fréchet differentiable at x if there is an A € Z(R", R™) such that

LS B) = () — AB]

0.
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[We did not specify which norms on R™ and R™ are being used here. Since all norms on
R? are topologically equivalent, the existence of the limit is independent of which norms
on R™ and on R™ we use.]

When f : U — R™ is Fréchet differentiable at x € U, we write Df(x) for the linear
transformation A € Z(R", R™) that appears in the limit.

The Fréchet derivative is sometimes called “the” derivative (we have not proven unique-
ness of A but will shortly), or the total derivative to distinguish it from the directional
(or Gateaux) derivative.

We often refer to Fréchet differentiable simply as differentiable.

We say that f is differentiable on U if f is differentiable at each x € U and write
Df:U — Z(R",R™) for the derivative.

Example (in lieu of 6.2.2). In standard coordinates, let f : R — R? be given by
fl@y,2) = (2* +y,y2).
We show that

is the Fréchet derivative of f at (1,2, 3).
To this end we have for h = (hq, ho, h3) that

F((1,2,3) + (hy, ho, hg)) — f(1,2,3)
= ((L+h)* 4+ (2+ ha), (2+ ha)(3+ h3)) — (3,6)
= (1 + 2hy + k] + 2 + hy, 6 + 2h3 + 3hy + hohs) — (3,6)
= (2hy + hy + h3, 2R3 + 3hy + hohs)

and that )
2 1 ! 2
Ah = [0 3 g] 7123 - {3:2? 2}23} ‘
Thus
F((1,2,3) + (hy, ho, h3)) — f(1,2,3) — Ah = (h7, haohs)
and so

1£((1,2,3) + (hy, hoy hs)) = f(1,2,3) = Ahllo = [[(hF, hohs)|l2 = \/ bl + B3RS,



Since

[(h1, ha, h3)lla = £/ hi + h3 + h3

we have
/ hE 4+ h2h2 h? + h2)(h? + h2 + h? /
hm 1+ 2143 < hm \/( 1+ 2)( 1+ 2+ 3) :hm h%—Fh%:O
h—0 /h% + h% + h§ h—0 h% + h% + hg h—0
because

R} + hih: < h2(hT + 2h3 + h3) + hah3 + hih;
= h2(h]+ h3 + h3) + hih3 + hah3 + h3h3
= (h3 + h3)(h3 + h3 + h3).

Example (in lieu of 6.2.3). At an arbitrary point (z,y, 2) the derivative of f(z,y, z) =
(22 4+ y, yz) is the matrix function

i = 1 9]

Nota Bene 6.2.4. Beware that (z,y,z) — Df(z,y, z) in the Example is not linear in
(x,y,2), i.e., Df(az, ay, az) is not equal to aDf(x,y, z).

In general we expect for a differentiable f : U — R™ that x — D f(x) is not linear in x.
For fixed x € U the function v — D f(x)v is linear in v because D f(x) € Z(R",R™).

Example 6.2.5. A linear transformation L € Z(R", R™) is differentiable on R™ because
for any x € R™ we have

o LG+ ) — L) = L[| _ IOl _

= = 0.
h0 1] w0 |11

Thus we have DL(x) = L so that DL(x)v = Lv for every x € R", i.e., the derivative is
independent of x.

If A is the matrix representation of L in the standard bases for R and R™, i.e., [L(x)] =
Alx], then DL(x) = A in the standard bases, i.e., [DL(x)v] = A[v].

If the matrix A is the transpose of a n x 1 real matrix a, i.e, A = a¥, then the linear
functional L(x) = (a,x) = a'x from R™ to R can also be expressed as L(x) = (x,a) = x'a
because (a,x) = (x,a), but the derivative of L is DL(x) = a%, i.e., [DL(x)v] = aT[v], not
a because a[v] makes no sense.

Example 6.2.6. The dual space of R™, equipped with the standard inner product
(x,y) = xTy, is the vector space (R™)* = Z(R™ R) = Z(R™ R).

The vector space (R™)* is isomorphic to R™ by the Finite Dimensional Reisz Represen-
tation Theorem: for each linear function L : R™ — R, there exists a unique y € R™ such
that L(x) = (y,x) = y’x, which gives an isomorphism y — (y,x) from R™ to (R™)*.



Because (y,x) = y'x we typically write the elements x of R™ as column vectors, i.e.,
m x 1 matrices, and the elements y? of (R™)* as row vectors, i.e., 1 x m matrices (where
y is a column vector).

We do this to distinguish vectors in the isomorphic vector spaces R™ and (R™)*.
For A € M,.m(R), the function f(x) = Ax from R™ to R" is differentiable on R™ with
Df(x) = A.

The matrix A also defines a function g(x) = x4 from R to (R™)*, i.e., xT A is a row
vector, i.e., an 1 X m vector.

It is HW (Exercise 6.10) to show that g is differentiable on R™ with derivative Dg satis-
fying Dg(x)v = vT A for v € R™.

If, instead, we write elements of (R™)* as column vectors, i.e., m x 1 matrices, then the
matrix A € M, (R) also defines a function g : R* — (R™)* given by g(x) = ATx.

It is HW (Exercise 6.10) to show that this g is differentiable on R™ with derivative Dg
satisfying Dg(x)v = ATv for v € R".

Remark 6.2.7. A linear transformation L : R — R™ is given in (standard) coordinates
by scalar product of a column vector [(1, ..., £,]".

When m = 1, the linear transformation is the scalar product of a 1 x 1 matrix.

For a differentiable function f : (a,b) — R the derivative D f(z) = f'(x) is an element of
AB(R) represented in (standard) coordinates by [f'(z)].

Example 6.2.8. For a differentiable curve « : (a,b) — R”, the derivative or velocity
v/(x) is precisely the total derivative Dvy(z).

This is because for each = € (a,b) we have

i (@ + 1) = (@) = @Al _ .

h—0 |h’ h—0 =0

—7(x)

(@ +h) —~(2)
h

Remark 6.2.9. The Fréchet or total derivative D f(x), when it exists, defines the best
linear approximation L(h) = Df(x)h of f(x + h) — f(x) in the sense that for all € > 0
there is a ¢ > 0 such that for all 0 < ||h|| < § there holds

| f(x+h) = FEI = [[LA] | < [If(x+h) = f(x) = L(R)|| <el|n]],
from which follows
IL(R)[| = elln]] < [[f(x+h) = || < [|L(R)]| + el

(compare with Remark 6.1.2).
We now prove that if a Fréchet derivative exists, it is unique.

Proposition 6.2.10. Let U be open in R™. If f : U — R™ is differentiable at x € U,
then D f(x) is unique.



Proof. Let Ly, Ly € Z(R™ R™) satisfy

TG B) = 79 = Lh)|
h=0 Al

=0, i=1,2.

For v # 0 and t # 0 we have

[L2(v) = Lol _ [t [[La(v) = Lo()|| _ [[La(tv) = Lo(tV)]
Il g Il [#v]] ’

where

[L1(tv) = Lo(tv)|

[[#v]]
_ NG tv) = F(x) = La(tv)) = (f(x 4+ 8v) = f(x) = La(tv)) |
[#v]]
< fx+t) —Htf(ﬁd — L@l | [fx+tv) _Ilif(lr) — Li(tv)]]

These last two expressions go to 0 as ¢ — 0 by hypothesis.
Thus Ly(v) = Lo(v) for all v € R™, which implies that L; = L. O
How could we more easily compute the Fréchet derivative when we know it exists?

Theorem 6.2.11 (the pointwise version). Let U be open in R", and express
f U — R™ in standard coordinates, i.e., f = (f1,..., fm), where f; : U — R for each
i=1,...,m. If fis differentiable at x € U, then the partial derivatives D, f;(x) exist for

all j =1,...,n,and for all : = 1,...,m, and the matrix representation of D f(x) in the
standard coordinates is the Jacobian matrix
Difi(x) Dafi(x) -+ Dpfi(x)
Difa(x)  Dafa(x) -+ Dnfa(x)
J(x) = , _ , :
lem<X> D2fm(X) anm(x)

Proof. Let J; be the j™ column of J(x), i.e., J; = Df(x)e;, and let .J;; be the i*" entry
of the j* column of J.

For h = re; we have

If(x+h) = f(x) = Df)h]]

0 = lim

h—0 |12l
Gt re) — 1) — DS (e |
=0 ] lle

 lim N f(z1, .. x4+ xn) — flor,. o, x,) — 1|
r—0 |7”|



This implies the each component of the vector function in the numerator goes to 0 as
r—0,ie.,

i \filwr, .o+ ) — filwn, oo ) — 1 di)
r—0 |’)“|

=0.

This shows that the partial derivative D; f;(x) exists and equals .J;;, and that the entries
of J(x) are precisely the partial derivatives D; f;(x). O

Note. The statement of Theorem 6.2.11 in the book assumes that f is Fréchet differen-
tiable on U and concludes that the partial derivatives D; f;(x) exist for all x € U. But
the proof of Theorem 6.2.11 in the book shows that Fréchet differentiability at a single
point implies the existence of the partial derivatives at that point.

Remark 6.2.12. We often call Df(x) the Jacobian matrix even though we have ex-
pressed the Jacobian as the matrix representation in the standard coordinates.

Example (in lieu of 6.2.13). The function f(z,y,z) = (v + y, yz) is differentiable
on R3, so by Theorem 6.2.11, the Jacobian of f is computed to be

2¢ 1 0
by computing the partial derivatives.
How do we determine if a function is differentiable on an open set?

Theorem 6.2.14. For U open in R” and f : U — R™ given by components f =
(f1,-.., fm) in standard coordinates, if the partial derivatives D, f;(x) exist and are con-
tinuous on U for allt=1,...,nand all j =1,...,m, then f is differentiable on U.

Proof. Supposing all of the partial derivatives exist we can form the matrix

Difi(x) Dafi(x) -+ Dnfi(x)

| Dife(x) Dafa(x) -+ Dnfa(x)
() = : : :

lem(X) D2fm(X) e anm(x)

We will show for each x € U that J(x) € Z(R",R™) satisfies

G ) = 109 = TG

0.
h—0 Al

Since all norms on R? are topologically equivalent, we will use the co-norm for both the
numerator and the denominator.

Choose § > 0 small enough so that B(x,) C U (we are using that U is open here).
For y € B(x,0) with y # x, we have

f(Y)_f(X) :f(y17>yn) _f(xbyQa7yn)+f<$lay27ayn)
— f(@1, 20,93, -y yn) + f(T1, 22,93, .- Yn)
+o 4 flxy, T, yn) — [T, ).



Passing to components, we have for i = 1,...,m and j = 1,...,n the differences

fi('rlv ey =15 Y5 Yj+1, - - 7yn) - f’i(xlv ey i1, LG, Y1y e 7yn)

whose sum over j = 1,...,n adds to f;(u) — fi(x) for each i = 1,...,m.

Define functions g;; defined by

z — fi(l’l, ey L1, 2, YLy - 7yn>

For j = 1, each function g¢;1(2) = fi(z,92,..-,9n), @ = 1,...,m, is differentiable on
the open interval with endpoints z; and y;, and continuous on the closed interval with
endpoints z; and y;.

By the Mean Value Theorem, there exists &; in the closed interval with endpoints x;
and y; such that

9a(y1) — gin(w1) = Difil§in, 92, -+, Yn) (g1 — 71).

Continuing to apply the Mean Value Theorem to g;; for j > 1 there exist §;; in the closed
interval with endpoints z; and y; such that

fi(xlv ey Lj—15 Y5 Yj1, - - 7yn) - f’i(xlv ey i1, LGy Y1y e 7yn)
= 0ij(y;) — 9i5(x5)
= D; fi(&i)(y; — ;).

Thus the sum of these differences for each ¢ = 1,...,m equals

fiy) = fi(x) = D1fi(&irs 92, - - -5 yn) (1 — 1) + Dafi(21, €205 Y35 -+ -5 Yn) (Y2 — 2)
+ -+ D?’Lfi(x17 CIE 7xn—1a€ni)(yn - xn)

Now the i*" entry of J(x)(y — x) is
)y —x))i = Z Djfi(zy, ... wn)(y; — ;).

Thus

£:9) = £i9 = 7€)y =)l
= |(D1fi(§i1, Y2, s Yn) — Difi(wr, -y 20)) (41 — 1)
+ (Do fi(z1, &2, Y35 - - Yn) — Dafilzn, . 20)) (Y2 — 22)
+ (anl(ajly vy Tp—1, Szn) - ani<£L'1, ce 7xn))(yn - $n)|
< |[D1fi(&irs v, -+ Yn) — Difizr, ..o m0)] |y — 24
+ | Do fi(@1, &2, Y3, - Yn) — Dafi(w1, ..., 2n)| |y2 — 22
+ ’anz(l’l, ey Tp_1, gzn) — an7;<l’1, Ce ,In)| |yn — In|



Since |y; — x| < ||y — x||oo, We can replace each |y; — x;| with ||y — x||o-

By the assumed continuity of the partial derivatives, we can for each ¢ > 0 choose § small
enough so that

|Dyfi(&insy2s - yn) — Difi(wr, ..o 2| <

|Da fi(x1, &2, Y35 - -2 Yn) — Dafi(wr, ... 20)| <

SIa3|m

|ani<$1, Ce 7xn—17§in> — ani(xl, P ,ZL‘n)’ S

Thus
[fi(y) = fix) = [y =x)]il < elly = x|
This implies that for every ¢ > 0 there exists a o > 0 such that
1 (y) = F(x) = J(x(y = ¥)loo < €lly = X[
holds whenever y € B(x,J).
Therefore f is differentiable at x and D f(x) = J(x) by uniqueness. O

Fréchet differentiability implies Gateaux differentiability, and permits the computation of
directional derivatives with relative ease (unlike the earlier computational tour du force).

Theorem 6.2.15. For U open in R, if f : U — R™ differentiable at x € U, then the
directional or Gateaux derivative along any v € R" exists and satisfies

Dy f(x) = Df(x)v.
Consequentially, the directional derivative of f at x is linear in v when f is differentiable
at x.
Proof. For v = 0, there is nothing to show, because the directional derivative exists and
is 0.
For v # 0, consider the function

o) - | L0109

; — Df(x)v

We will show that lim; o a(t) = 0.

For € > 0 there exists by the differentiability of f at x a d > 0 such that for all 0 < ||h|| < §

there holds
el|n]]

VIl

If(x+h) = f(x) = Df(x)h] <
This implies for nonzero h = tv satisfying ||tv]| < 0, i.e., [t| < d/|v]], that
If(x+tv) = f(x) = tDf(x)v] <elt].
Dividing through by [¢| and bringing |¢| inside the norm on the left gives

aft = [LEE =109

Therefore lim;_,o a(t) = 0. O

— Df(x)v|| <e.




