
Math 346 Lecture #2
6.2 The Fréchet Derivative in Rn

Definition 6.2.1. Let U be an open subset of Rn, x ∈ U , and f : U → Rm. We say f
is Fréchet differentiable at x if there is an A ∈ L (Rn,Rm) such that

lim
h→0

‖f(x + h)− f(x)− Ah‖
‖h‖

= 0.

[We did not specify which norms on Rn and Rm are being used here. Since all norms on
Rp are topologically equivalent, the existence of the limit is independent of which norms
on Rn and on Rm we use.]

When f : U → Rm is Fréchet differentiable at x ∈ U , we write Df(x) for the linear
transformation A ∈ L (Rn,Rm) that appears in the limit.

The Fréchet derivative is sometimes called “the” derivative (we have not proven unique-
ness of A but will shortly), or the total derivative to distinguish it from the directional
(or Gâteaux) derivative.

We often refer to Fréchet differentiable simply as differentiable.

We say that f is differentiable on U if f is differentiable at each x ∈ U and write
Df : U → L (Rn,Rm) for the derivative.

Example (in lieu of 6.2.2). In standard coordinates, let f : R3 → R2 be given by
f(x, y, z) = (x2 + y, yz).

We show that

A =

[
2 1 0
0 3 2

]
is the Fréchet derivative of f at (1, 2, 3).

To this end we have for h = (h1, h2, h3) that

f((1, 2, 3) + (h1, h2, h3))− f(1, 2, 3)

= ((1 + h1)
2 + (2 + h2), (2 + h2)(3 + h3))− (3, 6)

= (1 + 2h1 + h21 + 2 + h2, 6 + 2h3 + 3h2 + h2h3)− (3, 6)

= (2h1 + h2 + h21, 2h3 + 3h2 + h2h3)

and that

Ah =

[
2 1 0
0 3 2

]h1h2
h3

 =

[
2h1 + h2
3h2 + 2h3

]
.

Thus
f((1, 2, 3) + (h1, h2, h3))− f(1, 2, 3)− Ah = (h21, h2h3)

and so

‖f((1, 2, 3) + (h1, h2, h3))− f(1, 2, 3)− Ah‖2 = ‖(h21, h2h3)‖2 =
√
h41 + h22h

2
3.



Since

‖(h1, h2, h3)‖2 =
√
h21 + h22 + h23

we have

lim
h→0

√
h41 + h22h

2
3√

h21 + h22 + h23
≤ lim

h→0

√
(h21 + h22)(h

2
1 + h22 + h23)√

h21 + h22 + h23
= lim

h→0

√
h21 + h22 = 0

because

h41 + h22h
2
3 ≤ h21(h

2
1 + 2h22 + h23) + h22h

2
3 + h22h

2
2

= h21(h
2
1 + h22 + h23) + h21h

2
2 + h22h

2
2 + h23h

2
2

= (h21 + h22)(h
2
1 + h22 + h23).

Example (in lieu of 6.2.3). At an arbitrary point (x, y, z) the derivative of f(x, y, z) =
(x2 + y, yz) is the matrix function

Df(x, y, z) =

[
2x 1 0
0 z y

]
.

Nota Bene 6.2.4. Beware that (x, y, z)→ Df(x, y, z) in the Example is not linear in
(x, y, z), i.e., Df(αx, αy, αz) is not equal to αDf(x, y, z).

In general we expect for a differentiable f : U → Rm that x→ Df(x) is not linear in x.

For fixed x ∈ U the function v→ Df(x)v is linear in v because Df(x) ∈ L (Rn,Rm).

Example 6.2.5. A linear transformation L ∈ L (Rn,Rm) is differentiable on Rn because
for any x ∈ Rn we have

lim
h→0

‖L(x + h)− L(x)− L(h)‖
‖h‖

= lim
h→0

‖0‖
‖h‖

= 0.

Thus we have DL(x) = L so that DL(x)v = Lv for every x ∈ Rn, i.e., the derivative is
independent of x.

If A is the matrix representation of L in the standard bases for Rn and Rm, i.e., [L(x)] =
A[x], then DL(x) = A in the standard bases, i.e., [DL(x)v] = A[v].

If the matrix A is the transpose of a n × 1 real matrix a, i.e, A = aT, then the linear
functional L(x) = 〈a, x〉 = aTx from Rn to R can also be expressed as L(x) = 〈x, a〉 = xTa
because 〈a, x〉 = 〈x, a〉, but the derivative of L is DL(x) = aT, i.e., [DL(x)v] = aT[v], not
a because a[v] makes no sense.

Example 6.2.6. The dual space of Rm, equipped with the standard inner product
〈x, y〉 = xTy, is the vector space (Rm)∗ = L (Rm,R) = B(Rm,R).

The vector space (Rm)∗ is isomorphic to Rm by the Finite Dimensional Reisz Represen-
tation Theorem: for each linear function L : Rm → R, there exists a unique y ∈ Rm such
that L(x) = 〈y, x〉 = yTx, which gives an isomorphism y→ 〈y, x〉 from Rm to (Rm)∗.



Because 〈y, x〉 = yTx we typically write the elements x of Rm as column vectors, i.e.,
m× 1 matrices, and the elements yT of (Rm)∗ as row vectors, i.e., 1×m matrices (where
y is a column vector).

We do this to distinguish vectors in the isomorphic vector spaces Rm and (Rm)∗.

For A ∈ Mn×m(R), the function f(x) = Ax from Rm to Rn is differentiable on Rm with
Df(x) = A.

The matrix A also defines a function g(x) = xTA from Rn to (Rm)∗, i.e., xTA is a row
vector, i.e., an 1×m vector.

It is HW (Exercise 6.10) to show that g is differentiable on Rn with derivative Dg satis-
fying Dg(x)v = vTA for v ∈ Rn.

If, instead, we write elements of (Rm)∗ as column vectors, i.e., m× 1 matrices, then the
matrix A ∈Mn×m(R) also defines a function g : Rn → (Rm)∗ given by g(x) = ATx.

It is HW (Exercise 6.10) to show that this g is differentiable on Rn with derivative Dg
satisfying Dg(x)v = ATv for v ∈ Rn.

Remark 6.2.7. A linear transformation L : R→ Rm is given in (standard) coordinates
by scalar product of a column vector [`1, . . . , `m]T.

When m = 1, the linear transformation is the scalar product of a 1× 1 matrix.

For a differentiable function f : (a, b)→ R the derivative Df(x) = f ′(x) is an element of
B(R) represented in (standard) coordinates by [f ′(x)].

Example 6.2.8. For a differentiable curve γ : (a, b) → Rn, the derivative or velocity
γ′(x) is precisely the total derivative Dγ(x).

This is because for each x ∈ (a, b) we have

lim
h→0

‖γ(x+ h)− γ(x)− γ′(x)h‖
|h|

= lim
h→0

∥∥∥∥γ(x+ h)− γ(x)

h
− γ′(x)

∥∥∥∥ = 0.

Remark 6.2.9. The Fréchet or total derivative Df(x), when it exists, defines the best
linear approximation L(h) = Df(x)h of f(x + h) − f(x) in the sense that for all ε > 0
there is a δ > 0 such that for all 0 < ‖h‖ < δ there holds

| ‖f(x + h)− f(x)‖ − ‖L(h)‖ | ≤ ‖f(x + h)− f(x)− L(h)‖ < ε‖h‖,

from which follows

‖L(h)‖ − ε‖h‖ < ‖f(x + h)− f(x)‖ < ‖L(h)‖+ ε‖h‖

(compare with Remark 6.1.2).

We now prove that if a Fréchet derivative exists, it is unique.

Proposition 6.2.10. Let U be open in Rn. If f : U → Rm is differentiable at x ∈ U ,
then Df(x) is unique.



Proof. Let L1, L2 ∈ L (Rn,Rm) satisfy

lim
h→0

‖f(x + h)− f(x)− Li(h)‖
‖h‖

= 0, i = 1, 2.

For v 6= 0 and t 6= 0 we have

‖L1(v)− L2(v)‖
‖v‖

=
|t|
|t|
‖L1(v)− L2(v)‖

‖v‖
=
‖L1(tv)− L2(tv)‖

‖tv‖
,

where

‖L1(tv)− L2(tv)‖
‖tv‖

=
‖(f(x + tv)− f(x)− L2(tv))− (f(x + tv)− f(x)− L1(tv))‖

‖tv‖

≤ ‖f(x + tv)− f(x)− L2(tv)‖
‖tv‖

+
‖f(x + tv)− f(x)− L1(tv)‖

‖tv‖

These last two expressions go to 0 as t→ 0 by hypothesis.

Thus L1(v) = L2(v) for all v ∈ Rn, which implies that L1 = L2. �

How could we more easily compute the Fréchet derivative when we know it exists?

Theorem 6.2.11 (the pointwise version). Let U be open in Rn, and express
f : U → Rm in standard coordinates, i.e., f = (f1, . . . , fm), where fi : U → R for each
i = 1, . . . ,m. If f is differentiable at x ∈ U , then the partial derivatives Djfi(x) exist for
all j = 1, . . . , n, and for all i = 1, . . . ,m, and the matrix representation of Df(x) in the
standard coordinates is the Jacobian matrix

J(x) =


D1f1(x) D2f1(x) · · · Dnf1(x)
D1f2(x) D2f2(x) · · · Dnf2(x)

...
...

. . .
...

D1fm(x) D2fm(x) · · · Dnfm(x)

 .
Proof. Let Jj be the jth column of J(x), i.e., Jj = Df(x)ej, and let Jij be the ith entry
of the jth column of J .

For h = rej we have

0 = lim
h→0

‖f(x + h)− f(x)−Df(x)h‖
‖h‖

= lim
r→0

‖f(x + rej)− f(x)− rDf(x)ej‖
|r| ‖ej‖

= lim
r→0

‖f(x1, . . . , xj + r, . . . , xn)− f(x1, . . . , xn)− rJj‖
|r|



This implies the each component of the vector function in the numerator goes to 0 as
r → 0, i.e.,

lim
r→0

|fi(x1, . . . , xj + r, . . . , xn)− fi(x1, . . . , xn)− rJij|
|r|

= 0.

This shows that the partial derivative Djfi(x) exists and equals Jij, and that the entries
of J(x) are precisely the partial derivatives Djfi(x). �

Note. The statement of Theorem 6.2.11 in the book assumes that f is Fréchet differen-
tiable on U and concludes that the partial derivatives Difj(x) exist for all x ∈ U . But
the proof of Theorem 6.2.11 in the book shows that Fréchet differentiability at a single
point implies the existence of the partial derivatives at that point.

Remark 6.2.12. We often call Df(x) the Jacobian matrix even though we have ex-
pressed the Jacobian as the matrix representation in the standard coordinates.

Example (in lieu of 6.2.13). The function f(x, y, z) = (x2 + y, yz) is differentiable
on R3, so by Theorem 6.2.11, the Jacobian of f is computed to be

Df(x, y, z) =

[
2x 1 0
0 z y

]
by computing the partial derivatives.

How do we determine if a function is differentiable on an open set?

Theorem 6.2.14. For U open in Rn and f : U → Rm given by components f =
(f1, . . . , fm) in standard coordinates, if the partial derivatives Difj(x) exist and are con-
tinuous on U for all i = 1, . . . , n and all j = 1, . . . ,m, then f is differentiable on U .

Proof. Supposing all of the partial derivatives exist we can form the matrix

J(x) =


D1f1(x) D2f1(x) · · · Dnf1(x)
D1f2(x) D2f2(x) · · · Dnf2(x)

...
...

. . .
...

D1fm(x) D2fm(x) · · · Dnfm(x)

 .
We will show for each x ∈ U that J(x) ∈ L (Rn,Rm) satisfies

lim
h→0

‖f(x + h)− f(x)− J(x)h‖
‖h‖

= 0.

Since all norms on Rp are topologically equivalent, we will use the ∞-norm for both the
numerator and the denominator.

Choose δ > 0 small enough so that B(x, δ) ⊂ U (we are using that U is open here).

For y ∈ B(x, δ) with y 6= x, we have

f(y)− f(x) = f(y1, . . . , yn)− f(x1, y2, . . . , yn) + f(x1, y2, . . . , yn)

− f(x1, x2, y3, . . . , yn) + f(x1, x2, y3, . . . , yn)

+ · · ·+ f(x1, . . . , xn−1, yn)− f(x1, . . . , xn).



Passing to components, we have for i = 1, . . . ,m and j = 1, . . . , n the differences

fi(x1, . . . , xj−1, yj, yj+1, . . . , yn)− fi(x1, . . . , xj−1, xj, yj+1, . . . , yn)

whose sum over j = 1, . . . , n adds to fi(u)− fi(x) for each i = 1, . . . ,m.

Define functions gij defined by

z → fi(x1, . . . , xj−1, z, yj+1, . . . , yn).

For j = 1, each function gi1(z) = fi(z, y2, . . . , yn), i = 1, . . . ,m, is differentiable on
the open interval with endpoints x1 and y1, and continuous on the closed interval with
endpoints x1 and y1.

By the Mean Value Theorem, there exists ξi1 in the closed interval with endpoints x1
and y1 such that

gi1(y1)− gi1(x1) = D1fi(ξi1, y2, . . . , yn)(y1 − x1).

Continuing to apply the Mean Value Theorem to gij for j > 1 there exist ξij in the closed
interval with endpoints xj and yj such that

fi(x1, . . . , xj−1, yj, yj+1, . . . , yn)− fi(x1, . . . , xj−1, xj, yj+1, . . . , yn)

= gij(yj)− gij(xj)
= Djfi(ξij)(yj − xj).

Thus the sum of these differences for each i = 1, . . . ,m equals

fi(y)− fi(x) = D1fi(ξi1, y2, . . . , yn)(y1 − x1) +D2fi(x1, ξ2i, y3, . . . , yn)(y2 − x2)
+ · · ·+Dnfi(x1, . . . , xn−1, ξni)(yn − xn).

Now the ith entry of J(x)(y − x) is

[J(x)(y − x)]i =
n∑

j=1

Djfi(x1, . . . , xn)(yj − xj).

Thus

|fi(y)− fi(x)− [J(x)(y − x)]i|
= |(D1fi(ξi1, y2, . . . , yn)−D1fi(x1, . . . , xn))(y1 − x1)

+ (D2fi(x1, ξi2, y3, . . . , yn)−D2fi(x1, . . . , xn))(y2 − x2)
+ · · ·
+ (Dnfi(x1, . . . , xn−1, ξin)−Dnfi(x1, . . . , xn))(yn − xn)|

≤ |D1fi(ξi1, y2, . . . , yn)−D1fi(x1, . . . , xn)| |y1 − x1|
+ |D2fi(x1, ξi2, y3, . . . , yn)−D2fi(x1, . . . , xn)| |y2 − x2|
+ · · ·
+ |Dnfi(x1, . . . , xn−1, ξin)−Dnfi(x1, . . . , xn)| |yn − xn|



Since |yj − xj| ≤ ‖y − x‖∞, we can replace each |yj − xj| with ‖y − x‖∞.

By the assumed continuity of the partial derivatives, we can for each ε > 0 choose δ small
enough so that

|D1fi(ξi1, y2, . . . , yn)−D1fi(x1, . . . , xn)| < ε

n

|D2fi(x1, ξi2, y3, . . . , yn)−D2fi(x1, . . . , xn)| < ε

n
...

|Dnfi(x1, . . . , xn−1, ξin)−Dnfi(x1, . . . , xn)| ≤ ε

n
.

Thus
|fi(y)− fi(x)− [J(x)(y − x)]i| < ε‖y − x‖∞.

This implies that for every ε > 0 there exists a δ > 0 such that

‖f(y)− f(x)− J(x(y − x)‖∞ < ε‖y − x‖∞
holds whenever y ∈ B(x, δ).

Therefore f is differentiable at x and Df(x) = J(x) by uniqueness. �

Fréchet differentiability implies Gâteaux differentiability, and permits the computation of
directional derivatives with relative ease (unlike the earlier computational tour du force).

Theorem 6.2.15. For U open in Rn, if f : U → Rm differentiable at x ∈ U , then the
directional or Gâteaux derivative along any v ∈ Rn exists and satisfies

Dvf(x) = Df(x)v.

Consequentially, the directional derivative of f at x is linear in v when f is differentiable
at x.

Proof. For v = 0, there is nothing to show, because the directional derivative exists and
is 0.

For v 6= 0, consider the function

α(t) =

∥∥∥∥f(x + tv)− f(x)

t
−Df(x)v

∥∥∥∥ .
We will show that limt→0 α(t) = 0.

For ε > 0 there exists by the differentiability of f at x a δ > 0 such that for all 0 < ‖h‖ < δ
there holds

‖f(x + h)− f(x)−Df(x)h‖ < ε‖h‖
‖v‖

.

This implies for nonzero h = tv satisfying ‖tv‖ < δ, i.e., |t| < δ/‖v‖, that

‖f(x + tv)− f(x)− tDf(x)v‖ < ε|t|.
Dividing through by |t| and bringing |t| inside the norm on the left gives

α(t) =

∥∥∥∥f(x + tv)− f(x)

t
−Df(x)v

∥∥∥∥ < ε.

Therefore limt→0 α(t) = 0. �


