Math 346 Lecture #4
6.4 Properties of the Derivative

Throughout let (X, || -|x) and (Y, || - ||y) be Banach spaces over the same field F, and U
an open set in X.

We have already been using the next result, and will continue to use it tacitly.

Lemma 6.4.1. For a function f : U — Y, a point x € Y, and L € %(X,Y), the
following are equivalent.

(i) The function f is differentiable at x with derivative L.

(ii) For every € > 0 there exists 0 > 0 with B(x,0) C U such that for all h € B(x,0)
there holds
[f (x4 h) = f(x) = Lhlly < €l[h]lx.

The only minor wrinkle in the proof of this is the < in part (ii). But this follows by
replacing € with €/2 when applying the definition of differentiable.

6.4.1. Linearity

The reader is reminded of Theorem 3.5.11 that for Banach spaces (X, ||| x) and (Y, ||-|lv),
the collection Z(X,Y) is a normed linear space, so that linear combinations of finitely
many elements of #(X,Y") belong to A(X,Y).

Recall that the image D f(x)v of the derivative is not linear in x, but it is linear in v. We
now show that this image is linear in f.

Theorem 6.4.2 (Linearity, pointwise). For f,g: U — Y, if f and g are differen-
tiable at x € U, then for any a,b € F the linear combination af + bg is differenitable at
x and

D(af +bg)(x) = aDf(x) + bDg(x).

Proof. By the assumption of differentiability of f and ¢ at x, for any € > 0 there is § > 0
(the minimum of the ¢’s for f and g and the radius of a ball centered at x and contained
in U) such that for all h € B(x,¢) there holds

€|l x
[f(x+h) = f(x) = Df(x)h]ly < m
e | Al
lg(x+h) — g(x) — Dg(x)hlly < S+ 1)
Thus

laf(x+h)+bg(x+h) —af(x) —bg(x) — aDf(x)h — bDg(x)h]|,
<lallf(x+h) = f(x) = Df)hlly + [b] [lg(x + h) — g(x) — Dg(x)hy

elal [[h][x  e[b][[h]x

2(lal +1) " 2(Jo| + 1)

< e[[h| x-
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Since Df(x) and Dg(x) both belong to A(X,Y), then aDf(x) + bDg(x) € B(X,Y).
Thus af + bg is differentiable at x with derivative aD f(x) + bDg(x). O
Note. The version of Theorem 6.4.2 in the book — if f and g are differentiable on U then

af + bg is differentiable on U with derivative aD f 4+ bDg — follows from the pointwise
version proved above.

Remark 6.4.3. An immediate consequence of Theorem 6.4.2 is that the set C*(U,Y)
is a vector space. Is there a “natural” norm on this vector space? Yes, and we will learn
about it in Section 6.5 (and give the definition of it — something missing in the book).

6.4.2 The Product Rule

We can not multiply f,¢g: U — Y, i.e., f(x)g(x) might not make sense, for an arbitrary
Banach space Y. However if Y = IF, then we can.

Theorem 6.4.4 (Product Rule — pointwise). If f,g: U — T, are differentiable at
x € U, then the product h = fg is differentiable at x and the derivative of h at x satisfies

Dh(x) = g(x)Df(x) + f(x)Dg(x),

i.e., for all £ € X we have

Dh(x)§ = g(x)(Df(x)¢) + f(x)(Dg(x)€) € F,

because D f(x) € #(X,F) and Dg(x) € B(X,F) so that D f(x)§ and Dg(x){ both belong
to F, whence as g(x) and f(x) both belong to F that ¢g(x)(Df(x){) and f(x)(Dg(x)&)
both belong to F, so that finally Dh(x)¢ belongs to F.

Proof. Assuming f and ¢ are differentiable at x for each ¢ > 0 there is 6, > 0 (the
minimum of a finite number of positive §’s) with B(x,d) C U, and a constant L > 0 (by
Proposition 6.3.7) such that for all 0 < ||h]| < 0, there holds

[f(x+h) = Fx)] < Llh]lx,

and
) Dfs cllhl1x
|f(x+h)— f(x) = Df(x)h| < P
e [A]]
lg(x+h) — g(x) — Dg(x)h| < T TOIES

We are going to do an €/3 argument, and this will require the presence of three constraints
on the choice of §.

For € > 0 choose

€
0 =min< 1,6, .
{ 3L Dg(x)llxr + 1)}

Each constraint on ¢ will be used for one of the €/3 parts.



When 0 < ||h||x < 0 that

|f(x+h)g(x+h) = f(x)g(x) = g(x) Df(x)h — f(x)Dg(x)h|
= [f(x+h)g(x+h) = f(x+h)g(x) + f(x+ h)g(x) — f(x)g(x)
+ f(x+h)Dg(x)h — f(x+ h)Dg(x)h — g(x) D f(x)h — f(x)Dg(x)h|
< |fx+h)|lg(x+h) = g(x) = Dg(x)h|
+ 9| [f(x+h) = f(x) = Df(x)h]
+[fx+h) = FE]Dg)|xrllhllx
ellhllx ellhllx
< (If ()] + L)W + M@’W + 0L|| Dg(x)[|xrl[hllx

3+3+§:

where we have made use of the implication

[f(x+h) = )] < LlAlx = [fx+h)] < [f)]+ LlAlx

and the implication § < 1 = ||h||x < 1. O

We now look at other product-like differentiation rules. One of these involve matrix
functions. We say that a matrix function is differentiable at a point in its domain if
every entry in the matrix function is differentiable at that point. The derivative of a
differentiable matrix function is the entry-wise derivative of the matrix function.

Proposition 6.4.6 (pointwise version). (i) For an open set U of R", let u,v : U —
R™, and define f : U — R by

f(x) = u(x)"v(x).
If u and v are differentiable at a point x € U, then f is differentiable at x and the
derivative of f at x satisfies

Df(x) = u(x)"Dv(x) + v(x) T Du(x),
i.e., for all h € R™ we have
Df(x)h = u(x)"(Dv(x)h) + v(x)T (Du(x)h) € R,

because Dv(x) and Du(x) both belong to Z(R™,R™) so that Dv(x)h and Du(x)h both
belong to R™, whence as u(x) and v(x) both belong to R™ that u(x)T(Dv(x)h) and
v(x)T(Du(x)h) both belong to R, so finally that D f(x)h belongs to R.

(ii) For a matrix A € M,(R) the function g : R* — R defined by g(x) = xTAx is
differentiable at every x € R with

Dg(x) = x"(A+ A",
i.e., for all h € R™ we have

Dg(x)h =x"(A+ AM)h € R,



because A+ AT € M,,(R) and h € R so that (A+ AT)h € R", so that xT(A+ AT)h € R.

(iii) For an open subset U of R" let w : U — R™ and B : U — My, (R) and define
H:U — R* by H(x) = B(x)w(x). If w and B are differentiable at x € U, then the
function H is differentiable at x with

w(x)T Db (x)
B w(x)T Db (x)
DH(x) = B(x)Dw(x) + .

)

w(x)" Dby (x)
where b; is the k' row of B, i.e., for each ¢ € R" we have

w(x) " (Dby (x)€)

w(x)"(Db; (x)€)

DH(x)¢ = B(x)(Dw(x)£) + € R*,

w(x) (Db (x)€)

because Dw(x) € Z(R",R™), whence Dw(x)¢ € R™ so that B(x)(Dw(x)¢) € R*, and
because b : U — R™ so that Dbl (x) € Z(R",R™), whence Db} (x)¢ € R™, so that
w(x)" (Db (x)¢) € R.

The proof of Proposition 6.4.6 is HW (Exercise 6.16). Hint: for part (i) write u(x) and
v(x) in terms of standard coordinates and apply Theorem 6.4.4; for part (ii) put the
guess for the derivative in the definition and see what happens; for part (iii) write w(x)
and B(x) in standard coordinates for n = 2, m = 2, and k = 2 and see what happens,
keeping in mind that Fréchet derivatives are linear transformations.

6.4.3 The Chain Rule

Recall from Theorem 3.5.14 that for normed linear spaces (X, || - ||x), (Y,| - |ly), and
(Z, ]| lz), T € B(X,Y) and S € A(Y, Z), then the composition ST € A(X, Z).

Theorem 6.4.7 (The Chain Rule, pointwise version). Suppose (X, | - ||x),
(Y |l1ly), and (Z, || -||z) are Banach spaces, that U is open in X and V' is open in Y, and
f:U—=Yand g:V — Z with f(U) C V. If f is Fréchet differentiable at x € U and ¢
is Fréchet differentiable at y = f(x) € V, then h = go f : U — Z is Fréchet differentiable
at x with

Dh(x) = Dg(f(x))Df(x),
i.e., for all £ € X we have
Dh(x)§ = Dg(f(x))(Df(x)) € Z

because Df(x) € AB(X,Y) so that Df(x)¢ € Y, and because Dg(f(x)) € B(Y,Z) so
that Dg(f(x))(Df(x)€) € Z.

Proof. Choose € > 0.



By the assumed differentiability of f at x and the assumed differentiability of ¢ at y =
f(x), there is §; > 0 such that B(x,d;) C U and for all £ € X satisfying 0 < [|€||x <
there holds

e[|l x

(IDg(y)ly.z + 1)

By Proposition 6.3.7, the assumed differentiability of f at x implies that f is locally
Lipschitz at x, i.e., there exists do > 0 and L > 0 such that B(x,d3) C U and for all
¢ € X satistying 0 < ||€||x < 02 there holds

1F(c+8) = F)llx < Ll€]lx-

|£6x+€) = 1) = DIl < 5

Set 0y = min{dy, ds}.
By the assumed differentiability of g at y there exists d, > 0 such that B(y,dy) C V and
for all 0 < ||n||y < dy there holds

€Il
2L

lg(y +n) — 9(y) = Dg(y)nllz <

Set 6 = min{dy, dy/L}. (Hence LJ < §, which we will use in a moment.)
If weset n(§) = f(x+¢&) — f(x)=f(x+&) —y, then h = g o f satisfies

h(x+&) = h(x) =g(f(x+¢)) —9(f(x) = gly +n(§)) — 9(y).

Thus for all £ € X satisfying ||£]|x < § we have

Il = 1f(x+&) = F&)lly < Llllx < Ld <4y

so that
[A(x+ &) — h(x) — Dg(y)D f(x)¢]| 2
= llg(y +n(&)) — 9(y) — Dg(y)n(§) + Dg(y)n(§) — D ( )D f(x)€]| 2
<Ilg(y +n(&)) — 9(y) = Dg(y)n(€)llz + [[Dg(y)n(§) — Dg(y) D f(x)¢l| z
<Ilg(y +n(&)) — g(y) — Dg(y)n(E)llz + [[1Dg(y)llv.z[In(§) — Df(x)Elly
= |lg(y +n(8)) — 9(y) — Dg(y)n(€)l|z
+IDg) vzl f (x + &) — f(x) = Df(x)E|ly
elln(é)lly €H£Hx
eLll€llx | elléllx
=7 T
= ell€]lx-

Since Df(x) € A(X,Y) and Dg(y) € B(Y,Z), then Dg(y)Df(x) € B(X, Z).
This shows that h = g o f is differentiable at x with derivative is Dg(f(x))D f(x). O



