Math 346 Lecture #6 6.6 Taylor's Theorem

Throughout let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces over the same field \mathbb{F} , and U an open set in X.

6.5.1 Higher-Order Derivatives

Higher-order derivatives are defined inductively as explained below after some technical results.

Definition 6.6.1. For $\mathscr{B}^1(X, Y) = \mathscr{B}(X, Y)$, and $k \in \mathbb{N}$ with $k \ge 2$, the Banach spaces $\mathscr{B}^k(X, Y)$ are defined inductively by

$$\mathscr{B}^{k}(X,Y) = \mathscr{B}(X,\mathscr{B}^{k-1}(X,Y)).$$

Note. That $\mathscr{B}^k(X,Y)$ is a Banach space follows by Theorem 5.7.1, i.e., X is Banach space and $\mathscr{B}(X,Y)$ is a Banach space, so $\mathscr{B}(X,\mathscr{B}(X,Y))$ is a Banach space in the induced norm, etc.

Note. An element of $\mathscr{B}^2(X,Y)$ is a linear transformation $L: X \to \mathscr{B}(X,Y)$ whose induced norm

$$||L||_{X,\mathscr{B}(X,Y)} = \sup\left\{\frac{||L(\mathbf{h}_1)||_{X,Y}}{||\mathbf{h}_1||_X} : \mathbf{h}_1 \in X \setminus \{0\}\right\}$$

is finite, where for each $h_1 \in X$ the linear transformation $L(h_1) : X \to Y$ is bounded, i.e.,

$$||L(\mathbf{h}_1)||_{X,Y} = \sup\left\{\frac{||L(\mathbf{h}_1)\mathbf{h}_2||_Y}{||\mathbf{h}_2||_X} : \mathbf{h}_2 \in X \setminus \{0\}\right\} < \infty.$$

We combine $||L(\mathbf{h}_1)||_{X,Y} \le ||L||_{X,\mathscr{B}(X,Y)} ||\mathbf{h}_1||_X$ and $||L(\mathbf{h}_1)\mathbf{h}_2||_Y \le ||L(\mathbf{h}_1)||_{X,Y} ||\mathbf{h}_2||_X$ to get

 $||L(\mathbf{h}_1)\mathbf{h}_2||_Y \le ||L||_{X,\mathscr{B}(X,Y)} ||\mathbf{h}_1||_X ||\mathbf{h}_2||_X,$

or when both $\|\mathbf{h}_1\|_X$ and $\|\mathbf{h}_2\|_X$ nonzero, that

$$||L||_{X,\mathscr{B}(X,Y)} \ge \frac{||L(\mathbf{h}_1)\mathbf{h}_2||_Y}{||\mathbf{h}_1||_X ||\mathbf{h}_2||_X}$$

The upper bound $||L||_{X,\mathscr{B}(X,Y)}$ on the ratios is the supremum because for $\epsilon > 0$ there exists a nonzero $h_1 \in X$ such that

$$\frac{\|L(\mathbf{h}_1)\|_{X,Y}}{\|h_1\|_X} > \|L\|_{X,\mathscr{B}(X,Y)} - \frac{\epsilon}{2}$$

and there exists a nonzero $h_2 \in X$ such that

$$\frac{\|L(\mathbf{h}_1)\mathbf{h}_2\|_Y}{\|\mathbf{h}_2\|_X} > \|L(\mathbf{h}_1)\|_{X,Y} - \frac{\epsilon \|\mathbf{h}_1\|_X}{2},$$

so that

$$\frac{\|L(\mathbf{h}_1)\mathbf{h}_2\|_Y}{\|\mathbf{h}_1\|_X\|\mathbf{h}_2\|_X} > \frac{\|L(\mathbf{h}_1)\|_{X,Y}}{\|\mathbf{h}_1\|_X} - \frac{\epsilon}{2} > \|L\|_{X,\mathscr{B}(X,Y)} - \epsilon.$$

Thus

$$||L||_{X,\mathscr{B}(X,Y)} = \sup\left\{\frac{||L(\mathbf{h}_1)\mathbf{h}_2||_Y}{||\mathbf{h}_1||_X||\mathbf{h}_2||_X} : \mathbf{h}_1, \mathbf{h}_2 \in X \setminus \{0\}\right\}.$$

Note. Another interpretation of the elements L of $\mathscr{B}^2(X, Y)$ is as continuous multilinear transformations $L: X \times X \to Y$.

A transformation $L: X \times X \to Y$ is multilinear if for fixed h_2 , the map $h_1 \to L(h_1, h_2)$ from X to Y is linear, and for each fixed h_1 , the map $h_2 \to L(h_1, h_2)$ from X to Y is linear.

Previously for $L \in \mathscr{B}^2(X, Y) = \mathscr{B}(X, \mathscr{B}(X, Y))$ we wrote $L(h_1)h_2$, but since this L is linear in h_1 and linear in h_2 , it is multilinear, and we write $L(h_1, h_2)$ instead.

A multilinear transformation $L: X \times X \to Y$ is continuous if its norm

$$||L|| = \sup\left\{\frac{||L(\mathbf{h}_1, \mathbf{h}_2)||_Y}{||\mathbf{h}_1||_X ||\mathbf{h}_2||_X} : \mathbf{h}_1, \mathbf{h}_2 \in X \setminus \{0\}\right\}$$

is finite. [This is precisely the norm on L we got previous.]

Note. For Banach spaces X_1, \ldots, X_n and Y the Banach space $\mathscr{B}(X_1, \ldots, X_n; Y)$ consists of multilinear transformations $L: X_1 \times \cdots \times X_n \to Y$ whose norms

$$||L|| = \sup\left\{\frac{||L(\mathbf{h}_1, \dots, \mathbf{h}_n)||_Y}{||\mathbf{h}_1||_{X_1} \cdots ||\mathbf{h}_n||_{X_n}} : \mathbf{h}_i \in X_i \setminus \{0\}\right\}$$

are finite. The norm ||L|| has the property that

 $||L(\mathbf{h}_1,\ldots,\mathbf{h}_n)||_Y \le ||L|| ||\mathbf{h}_1||_{X_1}\cdots ||\mathbf{h}_n||_{X_n}$ for all $\mathbf{h}_i \in X_i$.

If $X_1 = \cdots = X_n$ we write $\mathscr{B}^k(X, Y)$ instead of $\mathscr{B}(X, \ldots, X; Y)$.

Definition 6.6.2. Let $f: U \to Y$ be differentiable on U.

We say f is twice differentiable on U if $Df : U \to \mathscr{B}(X, Y)$ is differentiable on U, and write $D^2f = D(Df)$ for the second derivative.

For each $\mathbf{x} \in U$, the second derivative $D^2 f(\mathbf{x})$, if it exists, belongs to $\mathscr{B}^2(X, Y)$, so that $D^2 f(\mathbf{x})$ is a continuous multilinear transformation that acts on a pair of vectors $(\mathbf{h}_1, \mathbf{h}_2) \in X \times X$ to produce a vector in Y.

Proceeding inductively for $k \geq 2$, if the map $D^{k-1}f: U \to \mathscr{B}^{k-1}(X, Y)$ is differentiable on U, then we say that f is k-times differentiable on U and denote the k^{th} derivative by $D^k f = D(D^{k-1}f).$

For each $\mathbf{x} \in U$, the k^{th} derivative $D^k f(\mathbf{x})$, if it exists, belongs to $\mathscr{B}^k(X, Y)$, so that $D^k f(\mathbf{x})$ is a continuous multilinear transformation that acts on k vectors $(\mathbf{h}_1, \ldots, \mathbf{h}_k) \in X \times \cdots \times X$ to produce a vector in Y.

If the k^{th} derivative $D^k f$ is continuous on U, then we say that f is k-times continuously differentiable on U.

We denote the set of k-times continuously differentiable functions on U by $C^{k}(U, Y)$. This is a vector space of functions. A function $f: U \to Y$ is called smooth if $f \in C^k(U, Y)$ for all $k \in \mathbb{N}$.

We denote the vector space of smooth functions from U to Y by $C^{\infty}(U, Y)$.

Example (slight variation of 6.3.3). For U open in \mathbb{R}^n , suppose $f : U \to \mathbb{R}$ is differentiable on U, i.e., $Df(\mathbf{x}) \in \mathscr{B}(\mathbb{R}^n, \mathbb{R})$ exists at each $\mathbf{x} \in U$.

The Banach space $\mathscr{B}(\mathbb{R}^n, \mathbb{R})$ is the dual space of \mathbb{R}^n , which by the Riesz Representation Theorem is isomorphic to \mathbb{R}^n , i.e., for each $L \in \mathscr{B}(\mathbb{R}^n, \mathbb{R})$ there exists a unique vector $\mathbf{u} \in \mathbb{R}^n$ such that $L(\mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v}$.

By writing the vector u as the row vector \mathbf{u}^{T} , we represent $Df(\mathbf{x})$ as a row vector, which by Theorem 6.2.11, in the standard basis of \mathbb{R}^n , is

$$Df(\mathbf{x}) = \begin{bmatrix} D_1 f(\mathbf{x}) & \cdots & D_n f(\mathbf{x}) \end{bmatrix}$$

where $D_i f(\mathbf{x}) = D f(\mathbf{x}) \mathbf{e}_i \in \mathbb{R}$, i = 1, ..., n, are the partial derivatives.

Now suppose that f is twice differentiable on U, i.e., $D^2 f(\mathbf{x}) \in \mathscr{B}^2(\mathbb{R}^n, \mathbb{R})$ exists at each $\mathbf{x} \in U$.

Since $\mathscr{B}^2(\mathbb{R}^n, \mathbb{R}) = \mathscr{B}(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n, \mathbb{R})) = \mathscr{B}(\mathbb{R}^n, (\mathbb{R}^n)^*)$, the directional derivative of $Df(\mathbf{x})$ in the direction $\mathbf{u} \in \mathbb{R}^n$, i.e., $D^2 f(\mathbf{x})(\mathbf{u}) \in (\mathbb{R}^n)^*$, is a row vector.

We can still apply Theorem 6.2.11, but in transposed form, i.e., $D^2 f(\mathbf{x})(\mathbf{u}) = \mathbf{u}^{\mathrm{T}} H^{\mathrm{T}}$ where *H* is the "Hessian" of *f* at x,

$$H = D \begin{bmatrix} D_1 f(\mathbf{x}) & \cdots & D_n f(\mathbf{x}) \end{bmatrix}^{\mathrm{T}}$$
$$= \begin{bmatrix} D_1 D_1 f(\mathbf{x}) & \cdots & D_n D_1 f(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ D_1 D_n f(\mathbf{x}) & \cdots & D_n D_n f(\mathbf{x}) \end{bmatrix},$$

so that

$$D^2 f(\mathbf{x})(\mathbf{u})(\mathbf{v}) = \mathbf{u}^{\mathrm{T}} H^{\mathrm{T}} \mathbf{v} \in \mathbb{R}$$

for all $u, v \in \mathbb{R}^n$.

From $D^2 f(\mathbf{x})(\mathbf{u})(\mathbf{v}) = \mathbf{u}^{\mathrm{T}} H^{\mathrm{T}} \mathbf{v} = \mathbf{v}^{\mathrm{T}} H \mathbf{u}$ (the transpose of a scalar is itself) we see that $D^2 f(\mathbf{x})$ does indeed act multilinearly on a pair of vectors $(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^n \times \mathbb{R}^n$ to produce a scalar, i.e., $D^2 f(\mathbf{x})(\mathbf{u}, \mathbf{v}) = \mathbf{u}^{\mathrm{T}} H^{\mathrm{T}} \mathbf{v} \in \mathbb{R}$.

Definition 6.6.4. Let $(X_i, \|\cdot\|_{X_i})$, i = 1, 2..., n, be a finite collection of Banach spaces. Fix an open set $U \subset X_1 \times X_2 \times \cdots \times X_n$, and an ordered list of k integers i_1, i_2, \cdots, i_k where $i_j \in \{1, \ldots, k\}$ (not necessarily distinct).

The kth-order partial derivative of $f \in C^k(U, Y)$ corresponding to i_1, \ldots, i_k is the function $D_{i_1}D_{i_2}\cdots D_{i_k}f \in C(U, \mathscr{B}(X_1, X_2, \ldots, X_k; Y)).$

[Recall from Definition 6.3.12, that the i^{th} partial derivative of a function $\alpha : X_1 \times \cdots \times X_n \to Y$ is the derivative of the function $\beta : X_i \to Y$ defined by $\beta(z) = \alpha(x_1, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_n)$, i.e., the function obtained from α by fixing all of its inputs except the i^{th} variable.]

When $X_i = \mathbb{F}$ for all i = 1, 2, ..., n and $Y = \mathbb{F}$, we often write $D_{i_1} D_{i_2} \cdots D_{i_k} f$ as the more familiar partial derivative

$$\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_k}}.$$

The Hessian of $f: U \to \mathbb{R}$, U open in \mathbb{R}^n , is nothing more than the matrix of second-order partial derivatives:

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

You might remember that this square matrix of second-order partial derivatives is usually symmetric. This is true when the second derivative is continuous.

Proposition 6.6.5. If $f \in C^2(U, Y)$ with Y finite dimensional, then for all $x \in U$ and for all $(u, v) \in X \times X$, there holds

$$D^2 f(\mathbf{x})(\mathbf{u}, \mathbf{v}) = D^2 f(\mathbf{x})(\mathbf{v}, \mathbf{u}).$$

When U is an open subset of $X = X_1 \times X_2 \times \cdots \times X_n$ for Banach spaces X_i , and $f \in C^2(U, Y)$ for finite dimensional Y, then for all $x \in U$ and for all $i, j \in \{1, 2, \ldots, n\}$, there holds

$$D_i D_j f(\mathbf{x}) = D_j D_i f(\mathbf{x}).$$

When U is a open subset of $X = \mathbb{F}^n = \mathbb{F} \times \mathbb{F} \times \cdots \times \mathbb{F}$, $Y = \mathbb{F}^m$, and $f = (f_1, f_2, \dots, f_m) \in C^2(U, Y)$, then for all $x \in U$ and for all $i, j \in \{1, 2, \dots, n\}$ and all $k \in \{1, 2, \dots, m\}$ there holds

$$\frac{\partial^2 f_k}{\partial x_i \partial x_j} = \frac{\partial^2 f_k}{\partial x_j \partial x_i}$$

Proof. The hypothesis of finite dimensionality of Y implies that we can assume WLOG that $Y = \mathbb{F}^m$ and that $f = (f_1, \ldots, f_m)$.

With \mathbb{C}^m and \mathbb{R}^{2m} isomorphic as Banach spaces (with the standard norms) we can assume WLOG that $\mathbb{F} = \mathbb{R}$.

Then as $f_k: U \to \mathbb{R}$ it suffices to show the result for $Y = \mathbb{R}$.

For a fixed $x \in U$ and $u, v \in X$ there exist t, s > 0 by the openness of U such that $x + \xi u + \eta v \in U$ for all $\xi, \eta \in [0, \max\{s, t\}]$.

Define $g: [0, t] \to \mathbb{R}$ by

$$g_{\xi}(\mathbf{x}) = f(\mathbf{x} + \xi \mathbf{u}) - f(\mathbf{x})$$

and $S_{\eta,t}(\mathbf{x}) : [0,s] \to \mathbb{R}$ by

$$S_{\eta,t}(\mathbf{x}) = g_t(\mathbf{x} + \eta v) - g_t(\mathbf{x})$$

= $f(\mathbf{x} + t\mathbf{u} + \eta v) - f(\mathbf{x} + \eta v) - f(\mathbf{x} + t\mathbf{u}) + f(\mathbf{x}).$

Recognize that $S_{0,t}(\mathbf{x}) = 0$ and that with \mathbf{x} and t fixed,

$$DS_{\eta,t}(\mathbf{x}) = Dg_t(\mathbf{x} + \eta \mathbf{v})\mathbf{v}.$$

The function $S_{\eta,t}$ is continuous on [0, s] and differentiable on (0, s), so by the Mean Value Theorem there exists $\sigma_{s,t} \in (0, s)$ such that

$$S_{s,t}(\mathbf{x}) = S_{s,t}(\mathbf{x}) - S_{0,t}(\mathbf{x}) = Dg_t(\mathbf{x} + \sigma_{s,t}\mathbf{v})(\mathbf{v})(s-0) = Dg_t(\mathbf{x} + \sigma_{s,t}\mathbf{v})(s\mathbf{v}).$$

Since $g_t(\mathbf{x} + \eta \mathbf{v}) = f(\mathbf{x} + t\mathbf{u} + \eta \mathbf{v}) - f(\mathbf{x} + \eta \mathbf{v})$ we have

$$Dg_t(\mathbf{x} + \sigma_{s,t}\mathbf{v})(s\mathbf{v}) = Df(\mathbf{x} + t\mathbf{u} + \sigma_{s,t}\mathbf{v})(s\mathbf{v}) - Df(\mathbf{x} + \sigma_{s,t}\mathbf{v})(s\mathbf{v}).$$

The function

$$\xi \to Df(\mathbf{x} + \xi \mathbf{u} + \sigma_{s,t}\mathbf{v})(s\mathbf{v}) - Df(\mathbf{x} + \sigma_{s,t}\mathbf{v})(s\mathbf{v})$$

is zero when $\xi = 0$, is continuous on [0, t] and differentiable on (0, t), so by the Mean Value Theorem there exists $\tau_{s,t} \in (0, t)$ such that

$$Df(\mathbf{x} + t\mathbf{u} + \sigma_{s,t}\mathbf{v})(s\mathbf{v}) - Df(\mathbf{x} + \sigma_{s,t}\mathbf{v})(s\mathbf{v}) = D^2f(\mathbf{x} + \tau_{s,t}\mathbf{u} + \sigma_{s,t}\mathbf{v})(s\mathbf{v})(t\mathbf{u})$$

Thus

$$S_{s,t}(\mathbf{x}) = D^2 f(\mathbf{x} + \tau_{s,t}\mathbf{u} + \sigma_{s,t}\mathbf{v})(s\mathbf{v}, t\mathbf{u}).$$

Switching the roles of tu and sv in the above argument gives the existence of $\tau'_{s,t}$ and $\sigma'_{s,t}$ such that

$$S_{s,t}(\mathbf{x}) = D^2 f(\mathbf{x} + \sigma'_{s,t}\mathbf{v} + \tau'_{s,t}\mathbf{u})(t\mathbf{u}, s\mathbf{v}).$$

[Needed that $\mathbf{x} + \xi \mathbf{u} + \eta \mathbf{v} \in U$ for all $\xi, \eta \in [0, \max\{s, t\}]$ here.] Equating the two expressions for the same quantity $S_{s,t}(\mathbf{x})$ gives

$$D^2 f(\mathbf{x} + \tau_{s,t}\mathbf{u} + \sigma_{s,t}\mathbf{v})(s\mathbf{v}, t\mathbf{u}) = D^2 f(\mathbf{x} + \sigma'_{s,t}\mathbf{v} + \tau'_{s,t}\mathbf{u})(t\mathbf{u}, s\mathbf{v}).$$

Since $D^2 f(\mathbf{x})$ is multilinear, we can pull out the scalars s and t from the inputs sv and tu from both sides; they cancel, giving

$$D^{2}f(\mathbf{x} + \tau_{s,t}\mathbf{u} + \sigma_{s,t}\mathbf{v})(\mathbf{v},\mathbf{u}) = D^{2}f(\mathbf{x} + \sigma'_{s,t}\mathbf{v} + \tau'_{s,t}\mathbf{u})(\mathbf{u},\mathbf{v}).$$

As the scalars $s, t \to 0$ the quantities $\sigma_{s,t}, \sigma'_{s,t}, \tau_{s,t}, \tau'_{s,t}$ all go to zero.

The assumed continuity of $D^2 f$ on U implies as $s, t \to 0$ that $D^2 f(\mathbf{x})(\mathbf{v}, \mathbf{u}) = D^2 f(\mathbf{x})(\mathbf{u}, \mathbf{v})$. In the case that $X = X_1 \times \cdots \times X_n$, we take $\mathbf{u}_i \in X_i$ and $\mathbf{v}_j \in X_j$ and form the vectors

$$u = (0, ..., u_i, ..., 0), v = (0, ..., v_j, ..., 0)$$

where u_i is in the i^{th} slot and v_j is in the j^{th} slot, to get

$$D^{2}f(\mathbf{x})(\mathbf{u},\mathbf{v}) = D^{2}f(\mathbf{x})(\mathbf{v},\mathbf{u})$$

which implies that $D_i D_j f(\mathbf{x}) = D_j D_i f(\mathbf{x})$.

Finally, the $D_i D_j f(\mathbf{x}) = D_j D_i f(\mathbf{x})$ implies the equality

$$\frac{\partial^2 f_k}{\partial x_i \partial x_j} = \frac{\partial^2 f_k}{\partial x_j \partial x_i}$$

for all $k = 1, \ldots, m$.

Remark 6.6.6. For $U \subset \mathbb{R}^n$ and $f \in C^2(U, \mathbb{R})$, Proposition 6.6.5 guarantees that the Hessian of f is a symmetric matrix.

6.6.2 Higher-Order Directional Derivatives

For U open in \mathbb{F}^n and $f \in C^k(U, \mathbb{F}^m)$, the derivative $D^k f(\mathbf{x})$ is an element of $\mathscr{B}^k(\mathbb{F}^n, \mathbb{F}^m)$ for each $\mathbf{x} \in U$.

This means that $D^k f(\mathbf{x})$ acts on k vectors from \mathbb{F}^n giving a vector in \mathbb{F}^m .

When all of the inputs of $D^k f(\mathbf{x})$ are the same vector v, we call the output

$$D_{\mathbf{v}}^{k}f(\mathbf{x}) = D^{k}f(\mathbf{x})(\mathbf{v},\dots,\mathbf{v})$$

the k^{th} directional derivative of f at x in the direction v.

We express the directional derivatives of f in terms of standard coordinates for \mathbb{F}^n and \mathbb{F}^m .

For k = 1 and

$$\mathbf{v} = \sum_{i=1}^{n} v_i \mathbf{e}_i \in \mathbb{F}^n,$$

the vector

$$Df(\mathbf{x})\mathbf{v} = \begin{bmatrix} D_1 f(\mathbf{x}) & \cdots & D_n f(\mathbf{x}) \end{bmatrix} \mathbf{v} = \sum_{j=1}^n D_j f(\mathbf{x}) v_j \in \mathbb{F}^m$$

is the first-order directional derivative $D_{\mathbf{v}}f(\mathbf{x})$ of f at \mathbf{x} in the direction \mathbf{v} . The second-order directional derivative of f at \mathbf{x} in the direction \mathbf{v} is

$$D_{v}^{2}f(\mathbf{x}) = D_{v}\sum_{j=1}^{n} D_{j}f(\mathbf{x})v_{j} = \sum_{i=1}^{n}\sum_{j=1}^{n} D_{i}D_{j}f(\mathbf{x})v_{i}v_{j} = \mathbf{v}^{\mathrm{T}}H(\mathbf{x})\mathbf{v},$$

where $H(\mathbf{x})$ is the Hessian of f at \mathbf{x} .

Iterating k times gives the k^{th} -order directional derivative of f at x in the direction v:

$$D_{\mathbf{v}}^{k}f(\mathbf{x}) = \sum_{i_1,\dots,i_k=1}^{n} D_{i_1}\cdots D_{i_k}f(\mathbf{x})v_{i_1}\cdots v_{i_k}.$$

Often we write $D^k f(\mathbf{x}) \mathbf{v}^{(k)}$ for $D^k_{\mathbf{v}} f(\mathbf{x})$ where by $\mathbf{v}^{(k)}$ we mean the k-component Cartesian product $(\mathbf{v}, \ldots, \mathbf{v})$.

Proposition 6.6.5 and its application to higher-order derivatives shows that many of the terms in the k^{th} -order directional derivative are repeated.

Combining these repeated terms gives

$$D_{\mathbf{v}}^{k}f(\mathbf{x}) = \sum_{j_{1}+\dots+j_{n}=k} \frac{k!}{j_{1}!\cdots j_{n}!} D_{1}^{j_{1}}\cdots D_{n}^{j_{n}}f(\mathbf{x})v_{1}^{j_{1}}\cdots v_{n}^{j_{n}}$$

where the quantities j_1, \ldots, j_n are nonnegative integers summing to the integer k.

6.6.3 Taylor's Theorem

We first recall Taylor's Theorem and Lagrange's Remainder Theorem for functions $f : U \to \mathbb{R}$ for an open interval $U \subset \mathbb{R}$.

Theorem 6.6.8. For an open interval U of \mathbb{R} , if $f: U \to \mathbb{R}$ is (k+1)-times differentiable on U, then for all $a \in U$ and $h \in \mathbb{R}$ satisfying $a + h \in U$ there exists c between a and a + h (h could be negative) such that

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2}h^2 + \dots + \frac{f^{(k)}(a)}{k!}h^k + \frac{f^{(k+1)}(c)}{(k+1)!}h^{k+1},$$

where $f^{(k)}$ is the k^{th} derivative of f.

We extend this to the Banach space setting where we make use of the higher-order directional derivatives $D^k f(\mathbf{x}) \mathbf{v}^{(k)}$.

Theorem 6.6.9. If $f \in C^k(U, Y)$, then for all $x \in U$ and $h \in X$ such that the line segment $\ell(x, x + h) = \{(1 - t)x + th : t \in [0, 1]\}$ lies in U, there holds

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + Df(\mathbf{x})\mathbf{h} + \frac{D^2 f(\mathbf{x})\mathbf{h}^{(2)}}{2!} + \dots + \frac{D^{k-1} f(\mathbf{x})\mathbf{h}^{(k-1)}}{(k-1)!} + R_k$$

where the remainder R_k is given by the integral form

$$R_k(\mathbf{x}, \mathbf{h}) = \int_0^1 \frac{(1-t)^{k-1}}{(k-1)!} D^k f(\mathbf{x}+t\mathbf{h}) \mathbf{h}^{(k)} dt.$$

The proof is by induction (see the text).

Remark 6.6.10. The $(k-1)^{\text{th}}$ Taylor polynomial approximation of $f \in C^k(U,Y)$ is given in Theorem 6.6.9 by ignoring the remainder term R_k .

If $f \in C^{\infty}(U, Y)$ and the remainder R_k goes to zero as $k \to \infty$, then the Taylor series for f converges to f, and we say that f is analytic.

Corollary 6.6.14. If $||D^k f(\mathbf{x} + t\mathbf{h})|| < M$ for all $t \in [0, 1]$, then

$$\|R_k\|_Y \le \frac{M}{k!} \|\mathbf{h}\|_X^k.$$

The proof of this is HW (Exercise 6.33. Hint: use a property of the norm for bounded multilinear transformations).

Example. Find the first-order Taylor polynomial approximation for

$$f(x,y) = \sin(x+y)$$

at the origin.

We compute several quantities:

$$f(0,0) = \sin(0+0) = 0,$$

$$D_1 f(0,0) = \cos(0+0) = 1,$$

$$D_2 f(0,0) = \cos(0+0) = 1.$$

Thus

$$f(h_1, h_2) = f(0, 0) + \begin{bmatrix} D_1 f(0, 0) & D_2 f(0, 0) \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$
$$= h_1 + h_2.$$

This is the tangent plane of the graph of $z = f(x, y) = \sin(x + y)$ at the point (0, 0).