Math 346 Lecture #6
6.6 Taylor’s Theorem

Throughout let (X, ||+ ||x) and (Y, || - ||y) be Banach spaces over the same field IF, and U
an open set in X.

6.5.1 Higher-Order Derivatives

Higher-order derivatives are defined inductively as explained below after some technical
results.

Definition 6.6.1. For #1(X,Y) = #(X,Y), and k € N with k > 2, the Banach spaces
$*(X,Y) are defined inductively by

B(X,)Y)=B(X, B"X,Y)).

Note. That #*(X,Y) is a Banach space follows by Theorem 5.7.1, i.e., X is Banach
space and Z(X,Y) is a Banach space, so Z(X,#(X,Y)) is a Banach space in the
induced norm, etc.

Note. An element of %?(X,Y) is a linear transformation L : X — %(X,Y) whose
induced norm
[L(hy) || x,y
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is finite, where for each h; € X the linear transformation L(h;) : X — Y is bounded,
ie.,

||LHX,%(X,Y) = sup {

| L(hy)hs |y
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We combine || L(hy)|xy < [[L]x.z0xx)l[hallx and [|L(hy)he[ly < [[L(h) ][ xy [[heflx to get

IL(ha)hally < [[L1[x, 2000 1] [ x,
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or when both ||h;||x and ||hy||x nonzero, that

| L (1 )holly
"= Thal[x[ha[x

The upper bound ||L||x,zxy) on the ratios is the supremum because for e > 0 there
exists a nonzero h; € X such that

L(h €
m > ||Ll| x.2xy) — =
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and there exists a nonzero hy € X such that
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Note. Another interpretation of the elements L of %?(X,Y) is as continuous multilinear
transformations L : X x X — Y.

A transformation L : X x X — Y is multilinear if for fixed hy, the map h; — L(hy, hy)
from X to Y is linear, and for each fixed hy, the map hy — L(hy, hy) from X to Y is
linear.

Previously for L € #*(X,Y) = B(X,#(X,Y)) we wrote L(hj)hy, but since this L is
linear in h; and linear in hy, it is multilinear, and we write L(hy, hy) instead.

T/ P—— {

A multilinear transformation L : X x X — Y is continuous if its norm
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is finite. [This is precisely the norm on L we got previous.]
Note. For Banach spaces X1, ..., X, and Y the Banach space (X, ..., X,;Y) consists

of multilinear transformations L : X; x --- x X,, — Y whose norms

||L(h177hn)||Y }
L|| =su +h; € X; 0
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are finite. The norm ||L|| has the property that

:hl,hzeX\{O}}

IL(, .. By < L] [allx, -~ L., for all b, € X,

If X ==X, we write Z*(X,Y) instead of Z(X,..., X;Y).
Definition 6.6.2. Let f: U — Y be differentiable on U.

We say f is twice differentiable on U if Df : U — Z(X,Y) is differentiable on U, and
write D?f = D(Df) for the second derivative.

For each x € U, the second derivative D?f(x), if it exists, belongs to %*(X,Y), so
that D?f(x) is a continuous multilinear transformation that acts on a pair of vectors
(h1,hg) € X x X to produce a vector in Y.

Proceeding inductively for k > 2, if the map D*7'f : U — 2%~ 1(X,Y) is differentiable
on U, then we say that f is k-times differentiable on U and denote the k™" derivative by
D*f = D(DF1f).

For each x € U, the k' derivative D*f(x), if it exists, belongs to %*(X,Y), so that
D*f(x) is a continuous multilinear transformation that acts on k vectors (hy,...,h;) €
X x --- x X to produce a vector in Y.

If the k' derivative D* f is continuous on U, then we say that f is k-times continuously
differentiable on U.

We denote the set of k-times continuously differentiable functions on U by C*(U,Y).
This is a vector space of functions.



A function f: U — Y is called smooth if f € C*(U,Y) for all k € N.
We denote the vector space of smooth functions from U to Y by C*(U,Y).

Example (slight variation of 6.3.3). For U open in R", suppose f : U — R is
differentiable on U, i.e., Df(x) € Z(R",R) exists at each x € U.

The Banach space #(R"™,R) is the dual space of R"™, which by the Riesz Representation
Theorem is isomorphic to R™, i.e., for each L € Z(R",R) there exists a unique vector
u € R™ such that L(v) = (u,v) = ulv.

By writing the vector u as the row vector u', we represent D f(x) as a row vector, which
by Theorem 6.2.11, in the standard basis of R", is

Df(x) = [Dif(x) -+ Duf(x)]

where D; f(x) = Df(x)e; € R, i =1,...,n, are the partial derivatives.

Now suppose that f is twice differentiable on U, i.e., D?f(x) € %%*(R", R) exists at each
xeU.

Since *(R™, R) = B(R", Z(R",R)) = B(R", (R")*), the directional derivative of D f(x)
in the direction u € R", i.e., D*f(x)(u) € (R")*, is a row vector.

We can still apply Theorem 6.2.11, but in transposed form, i.e., D?f(x)(u) = utH?
where H is the “Hessian” of f at x,

H=D[Dif(x) - Duf(x)]"
D1D1f<X) T Dnle(X)
DID;f(x) - DnD;Lf(X) |

so that
D?*f(x)(u)(v) =u"H'v e R

for all u,v € R".

From D?f(x)(u)(v) = uTHTv = vT Hu (the transpose of a scalar is itself) we see that
D?f(x) does indeed act multilinearly on a pair of vectors (u,v) € R™ x R™ to produce a
scalar, i.e., D?f(x)(u,v) = uTH'v € R.

Definition 6.6.4. Let (X;,|-||x,), i = 1,2...,n, be a finite collection of Banach spaces.

Fix an open set U C X; x X3 X -+ x X,,, and an ordered list of k integers iy, 19, , i
where ¢; € {1,...,k} (not necessarily distinct).

The k*t-order partial derivative of f € C*(U,Y’) corresponding to iy, . . ., i is the function

Di1Di2 e Dzkf - C(U, %(Xl,X% . ,Xk, Y))

[Recall from Definition 6.3.12, that the " partial derivative of a function a : X; x
- x X, — Y is the derivative of the function 8 : X; — Y defined by p(z) =

ATy, Ti1, 2, Tis1, - - -, Tp), 1.€., the function obtained from « by fixing all of its inputs
except the i variable.]



When X; = F for all e = 1,2,...,n and Y = F, we often write D;, D,, --- D, f as the
more familiar partial derivative
ok f
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The Hessian of f : U — R, U open in R", is nothing more than the matrix of second-order
partial derivatives:

0*f 0% f
81’181’1 o 8xn8x1
H = : :
0*f o0 f
0x10%, o 02,0,

You might remember that this square matrix of second-order partial derivatives is usually
symmetric. This is true when the second derivative is continuous.

Proposition 6.6.5. If f € C?(U,Y) with Y finite dimensional, then for all x € U and
for all (u,v) € X x X, there holds

D f(x)(u,v) = D*f(x)(v,u).

When U is an open subset of X = X; x Xy x --- x X,, for Banach spaces X;, and
f € C*U,Y) for finite dimensional Y, then for all x € U and for all 7,5 € {1,2,...,n},
there holds

D;D;f(x) = D;D, f(x).

When U is a open subset of X =F" = FxFx---xF, Y =F" and f = (f1, fo,..., fm) €
C?(U,Y), then for all x € U and for all 4,5 € {1,2,...,n} and all k € {1,2,...,m} there
holds
P OPf
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Proof. The hypothesis of finite dimensionality of ¥ implies that we can assume WLOG
that Y = F™ and that f = (f1,..., fm)-

With C™ and R?™ isomorphic as Banach spaces (with the standard norms) we can assume
WLOG that F = R.

Then as f; : U — R it suffices to show the result for Y = R.

For a fixed x € U and u,v € X there exist t,s > 0 by the openness of U such that
x+&u+nv e U for all £, n € [0, max{s,t}].

Define ¢ : [0,¢] — R by

9¢(x) = f(x +&u) — f(x)
and S, ,(x) : [0,s] = R by

Spe(x) = ge(x +nv) — g:(x)
= f(x+tu+nv) = f(x+nv) = f(x+ta) + f(x).



Recognize that Sp;(x) = 0 and that with x and ¢ fixed,
DS, (x) = Dgi(x + nv)v.

The function S, is continuous on [0, s] and differentiable on (0, s), so by the Mean Value
Theorem there exists o, € (0, s) such that

Ssi(x) = Ss1(x) — So4(x) = Dge(x + 054v)(v)(s — 0) = Dgi(x + 04,v)(sV).
Since gi(x +nv) = f(x +tu+nv) — f(x + nv) we have
Dgi(x+ 054v)(sv) = Df(x +tu+ 05,v)(sv) — Df(x+ 05:v)(sv).

The function
E—= Df(x+&u+o0s,v)(sv) — Df(x+ 054v)(sv)

is zero when ¢ = 0, is continuous on [0,¢] and differentiable on (0,t), so by the Mean
Value Theorem there exists 75, € (0,t) such that

Df(x+tu+05,v)(sv) = Df(x+ 00v)(sv) = DAf (x + 7o+ 054v) (sv) (t).

Thus
St(x) = D*f(x + Ty u + 04,v)(sv, ).

Switching the roles of tu and sv in the above argument gives the existence of 7;, and oy,
such that
Ss,t(x) = DQf(X + J;,tv + T;,tu) (tu7 SV)'

[Needed that x + &u+ nv € U for all £,n € [0,max{s,t}] here] Equating the two
expressions for the same quantity S ;(x) gives

D*f(x + Tgpu+ o54v)(sv, tu) = D*f(x + ol v + 71 ,u) (tu, sv).

Since D?f(x) is multilinear, we can pull out the scalars s and ¢ from the inputs sv and
tu from both sides; they cancel, giving

D? f(x + Tetl+ 054V)(V, 1) = sz(x + cr;tv + T;tu)(u, V).

As the scalars s,t — 0 the quantities o, 0% ;, T, o, all go to zero.
The assumed continuity of D?f on U implies as s, ¢ — 0 that D? f(x)(v,u) = D?*f(x)(u, v).
In the case that X = X x --- x X,,, we take u; € X; and v; € X; and form the vectors

u=(0,...,u,...,0), v=(0,...,v;,...,0)
where u; is in the i slot and v, is in the j* slot, to get
D*f(x)(u,v) = D* f(x)(v, )
which implies that D;D; f(x) = D; D, f(x).



Finally, the D;D; f(x) = D;D; f(x) implies the equality
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forall k=1,...,m. O

Remark 6.6.6. For U C R" and f € C?(U,R), Proposition 6.6.5 guarantees that the
Hessian of f is a symmetric matrix.

6.6.2 Higher-Order Directional Derivatives

For U open in F™ and f € C*(U,F™), the derivative D* f(x) is an element of %*(F", F™)
for each x € U.

This means that D* f(x) acts on k vectors from F" giving a vector in F™.

When all of the inputs of D¥f(x) are the same vector v, we call the output

D]\ff(x) = Dkf(x)(v,...,v)

the k" directional derivative of f at x in the direction v.

We express the directional derivatives of f in terms of standard coordinates for F" and
Fm.
For £ =1 and

n
vV = Z V;€; € ]Fn,
i=1
the vector

Df(x)v=[Dif(x) -+ Duf(x)]v=>_ D;f(x)v; €F"

j=1
is the first-order directional derivative D, f(x) of f at x in the direction v.

The second-order directional derivative of f at x in the direction v is

DZDf ZZDD]“ Joiv; = vEH(x)v,

=1 j5=1

where H(x) is the Hessian of f at x.

Iterating k times gives the k™-order directional derivative of f at x in the direction v:
Z Dy, -+ Dy, ( )Uil"'vik'

Often we write D¥ f(x)v(®) for D¥ f(x) where by v(¥) we mean the k-component Cartesian
product (v,...,v).

Proposition 6.6.5 and its application to higher-order derivatives shows that many of the
terms in the k*™-order directional derivative are repeated.



Combining these repeated terms gives

k! . ) . .
Dif(x)= Y, ——=D{--Dyfof -
itk JE T
where the quantities jq, ..., J, are nonnegative integers summing to the integer k.

6.6.3 Taylor’s Theorem

We first recall Taylor’s Theorem and Lagrange’s Remainder Theorem for functions f :
U — R for an open interval U C R.

Theorem 6.6.8. For an open interval U of R, if f : U — R is (k+1)-times differentiable

on U, then for all @ € U and h € R satisfying a + h € U there exists ¢ between a and

a + h (h could be negative) such that
//(a)

*®)(a (k+1) (.
fla+m) = fl@)+ Flan+ LDz LD —JZ]H 1()')}1

where f*) is the k™" derivative of f.

We extend this to the Banach space setting where we make use of the higher-order
directional derivatives D* f(x)v).

Theorem 6.6.9. If f € C*(U,Y), then for all x € U and h € X such that the line
segment /(x,x +h) = {(1 —t)x+th:t € [0,1]} lies in U, there holds

D2 h(2) Dk-1 h(k—l)
FEOR DM

flcth) = f() + DGO+ 2 4 Y

+ Ry,

where the remainder Ry is given by the integral form

1 _ \k—-1
Ri(x,h) = /O %Dkf(erth)h(k) dt.

The proof is by induction (see the text).

Remark 6.6.10. The (k — 1) Taylor polynomial approximation of f € C*(U,Y) is
given in Theorem 6.6.9 by ignoring the remainder term Ry.

If f e C>(U,Y) and the remainder Ry, goes to zero as k — oo, then the Taylor series for
f converges to f, and we say that f is analytic.

Corollary 6.6.14. If | D* f(x + th)|| < M for all t € [0,1], then
M
1Rilly < 2 Il

The proof of this is HW (Exercise 6.33. Hint: use a property of the norm for bounded
multilinear transformations).

Example. Find the first-order Taylor polynomial approximation for

f(z,y) = sin(x +y)



at the origin.

We compute several quantities:

£(0,0) =sin(0+ 0) =0,
D1 f(0,0) =cos(040) =1,
D5 f(0,0) = cos(0+0) = 1.

Thus

f(hi,he) = f(0,0) + [D1£(0,0) Dsf(0,0)] {Z;]
= hy + ho.

This is the tangent plane of the graph of z = f(z,y) = sin(x + y) at the point (0, 0).



