
Math 346 Lecture #10
7.4 The Implicit and Inverse Function Theorems

7.4.1 Implicit Function Theorem

For A,B ∈ Mn(F), c ∈ Fn, variables y, x ∈ Fn, and F (x, y) = Ay + Bx, what condition
is required to solve

c = F (x, y)

for y as a function of x? It is the invertibility of D2F (x, y) = A from which we get

y = A−1(c−Bx),

i.e., y is a function of x on the level set c = F (x, y).

For general F : Fn × Fn → Fn, solving c = F (x, y) for y as a function of x, requires the
invertibility of

D2F (x0, y0)

at some point (x0, y0) at which c = F (x0, y0), to get that y is locally a function of x in a
neighbourhood of x0.

Theorem 7.4.2 (Implicit Function Theorem). For Banach spaces (X, ‖ · ‖X),
(Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z), let U be an open neighbourhood of x0 ∈ X, V an open
neighbourhood of y0 in Y , and F ∈ Ck(U × V, Z) for some k ≥ 1. For z0 = F (x0, y0),
if D2F (x0, y0) ∈ B(Y, Z) has bounded inverse, then there exists an open neighbourhood
U0×V0 ⊂ U×V with (x0, y0) ∈ U0×V0, and a unique f ∈ Ck(U0, V0) such that f(x0) = y0,

{(x, y) ∈ U0 × V0 : F (x, y) = z0} = {(x, f(x)) : x ∈ U0},

and for all x ∈ U0 there holds

Df(x) = −D2F (x, f(x))−1D1F (x, f(x)).

Proof. By replacing F (x, y) with F (x, y) − z0 (which doesn’t change derivatives), we
assume WLOG that F (x0, y0) = 0.

Applying the quasi-Newton method for each fixed x ∈ U we define a function G ∈
Ck(U × V, Y ) given by

G(x, y) = y −D2F (x0, y0)
−1F (x, y).

The bounded linear map D2F (x0, y0)
−1 is invertible by hypothesis.

This implies that for each fixed x ∈ U , we have G(x, y) = y if and only if F (x, y) = 0.

The derivative of G with respect to y evaluated at (x0, y0) is

D2G(x0, y0) = I −D2F (x0, y0)
−1D2F (x0, y0) = 0.

Since G is Ck on U × V , there exist open sets U1 ⊂ U and V0 ⊂ V such that x0 ∈ U1,
y0 ∈ V0, and for all (x, y) ∈ U1 × V 0 there holds

‖D2G(x, y)‖ < 1

2
.



WLOG we may assume that V0 = B(y0, δ) for some δ > 0.

Since F is Ck and vanishes at (x0, y0), i.e., F (x0, y0) = 0, there exists an open U0 ⊂ U1

such that x0 ∈ U0 and for all x ∈ U0 there holds

‖D2F (x0, y0)
−1‖ ‖F (x, y0‖ <

δ

2
.

By the triangle inequality, Integral Mean Value Theorem, and the definition of G we have

‖G(x, y)− y0‖ ≤ ‖G(x, y)−G(x, y0)‖+ ‖G(x, y0)− y0‖
≤ sup

c∈`(y0,y)
‖D2G(x, c)‖ ‖y − y0‖+ ‖D2F (x0, y0)

−1F (x, y0)‖

≤ 1

2
‖y − y0‖+ ‖D2F (x0, y0)

−1‖ ‖F (x, y0)‖

<
δ

2
+
δ

2
= δ

whenever (x, y) ∈ U0 × V 0.

This implies that G(x, y) ∈ B(y0, δ), so that G maps U0 × V 0 to V 0.

Applying the Integral Mean Value Theorem, for x ∈ U0 and y1, y2 ∈ V 0 we have

‖G(x, y1)−G(x, y2)‖ ≤ sup
λ∈[0,1]

‖D2G(x, λy1 + (1− λ)y2)‖ ‖y1 − y2‖

≤ 1

2
‖y1 − y2‖.

This implies that G : U0 × V 0 → V 0 is a uniform contraction.

By the Uniform Contraction Mapping Principle (Theorem 7.2.4) there exists a unique
f ∈ Ck(U0, V 0) such that for all x ∈ U0 there holds

G(x, f(x)) = f(x).

By the equivalence of G(x, y) = y if and only if F (x, y) = 0, we obtain

F (x, f(x)) = 0 for all x ∈ U0.

Since ‖G(x, y)− y0‖ < δ on U0 × V 0 we can restrict the codomain of f to V0.

Differentiating the Ck function F (x, f(x)) = 0 on U0 gives

D1F (x, f(x)) +D2F (x, f(x))Df(x) = 0.

Since D2F (x0, y0) has bounded inverse, there exists a possible smaller choice of U0 × V0
on which D2F (x, y) has bounded inverse (see Lemma 7.3.11).

Thus we obtain Df(x) = −D2F (x, f(x))D1F (x, f(x)) for all x ∈ U0. �



Note. The condition of D2F (x0, y0) ∈ B(Y, Z) having bounded inverse not only implies
that D2F (x0, y0) is an isomorphism from Y to Z, but that it is a Banach space isomor-
phism, i.e., D2F (x0, y0) is also a homeomorphism from Y to Z. This means that Y and
Z must be topologically equivalent as topological spaces in order to apply the Implicit
Function Theorem. In finite dimensions this requires that Y and Z must have the same
dimension. In most applications of the Implicit Function Theorem you will notice that
Y = Z so that D2F (x0, y0) ∈ B(Y ) and the condition that D2F (x0, y0) have bounded
inverse means that D2F (x0, y0) ∈ GL(Y ). When Y is finite dimensional this means that
D2F (x0, y0), when represented in coordinates, is an invertible matrix.

Example (in lieu of 7.4.5). Consider the surface in R3 that is the 0-level set of the
function

F (x, y, z) = x3 + 3y2 + 8xz2 − 3yz3 − 9.

Find the points (x0, y0, z0) near which the surface F = 0 is locally the graph of a function
z = f(x, y).

Since it is z we want to write as a function of (x, y) we want those points (x0, y0, z0) on
F = 0 where D3F (x0, y0, z0) has bounded inverse.

Here D3F (x0, y0, z0) ∈ L (R), i.e., a 1× 1 matrix, which has bounded inverse if and only
if the derivative is nonzero.

We compute
D3F (x, y, z) = 16xz − 9yz2 = z(16x− 9yz).

The surface is locally the graph of a function z = f(x, y) at those points (x0, y0, z0) for
which

D3F (x0, y0, z0) = z0(16x0 − 9y0z0) 6= 0.

The point (1, 1, 1) lies on the surface F = 0 because F (1, 1, 1) = 1 + 3 + 8− 3− 9 = 0.

Since D3F (1, 1, 1) = 16 − 9 = 5 6= 0, the surface is locally the graph of a function
z = f(x, y) near (1, 1, 1).

Example (in lieu of 7.4.6). Can we uniquely solve

xu+ yvu2 = 2,

xu3 + y2v4 = 2,

for (u, v) as a function of (x, y) near the point (x, y, u, v) = (1, 1, 1, 1)?

Check that the equations are satisfied at the given point (1, 1, 1, 1). X

We have here a C∞ function F : R2 × R2 → R2 whose components are

F1(x, y, u, v) = xu+ yvu2 − 2, F2(x, y, u, v) = xu3 + y2v4 − 2.

Since we want to express (u, v) as a function of (x, y), we want to compute the derivative

D2F =


∂F1

∂u

∂F1

∂v

∂F2

∂u

∂F2

∂v

 =

[
x+ 2yuv yu2

3xu2 4uy2v3

]
.



Since

D2F (1, 1, 1, 1) =

[
3 1
3 4

]
has determinant 12− 3 = 9 6= 0, the linear operator D2F (1, 1, 1, 1) has bounded inverse.

Thus we can uniquely solve for (u, v) as functions of (x, y) near (1, 1, 1, 1).

This means that there are C∞ functions u = f(x, y) and v = g(x, y) defined on an open
neighbourhood of (1, 1) that satisfy 1 = f(1, 1), 1 = g(1, 1), and

xf(x, y) + yg(x, y)[f(x, y)]2 = 2, x[f(x, y)]3 + y2[g(x, y)]4 = 2.

Taking the partial derivatives of these equations with respect to x gives

f(x, y) + x
∂f

∂x
+ y

∂g

∂x
[f(x, y)]2 + 2yg(x, y)f(x, y)

∂f

∂x
= 0,

[f(x, y)]3 + 3x[f(x, y)]2
∂f

∂x
+ 4y2[g(x, y)]3

∂g

∂x
= 0.

Evaluating these equations at x = 1, y = 1 gives

3
∂f

∂x
(1, 1) +

∂g

∂x
(1, 1) = −1,

3
∂f

∂x
(1, 1) + 4

∂g

∂x
(1, 1) = −1.

This is a system of linear equations whose coefficient matrix is invertible, hence the
system can be solved to give

∂f

∂x
(1, 1) = −1

3
,
∂g

∂x
(1, 1) = 0.

Similarly we can compute

∂f

∂y
(1, 1) = −2

9
,
∂g

∂x
(1, 1) = −1

3
.

7.4.2 Inverse Function Theorem

Recall from single-variable Calculus that if f : (a, b)→ R is C1 and at c ∈ (a, b) we have
f ′(c) 6= 0, then f ′ is of one sign on an interval containing c, so that f is monotone, hence
f has a local inverse near c. The conclusion of local invertibility extends to the general
Banach space setting as a consequence of the derivative having bounded inverse.

Theorem 7.4.8 (The Inverse Function Theorem). For Banach spaces (X, ‖ · ‖X)
and (Y, ‖ · ‖Y ), let U be an open neighbourhood of x0 ∈ X, V an open neighbourhood of
y0 ∈ Y , and f ∈ Ck(U, V ) for some k ≥ 1 satisfying f(x0) = y0. If Df(x0) ∈ B(X, Y )
has bounded inverse, then there exist open neighbourhoods U0 ⊂ U of x0 and V0 ⊂ V of
y0, and a unique g ∈ Ck(V0, U0) such that g(f(x)) = x for all x ∈ U0, f(g(y)) = y for all
y ∈ V0, and for all y ∈ V0 there holds

Dg(y) = Df(g(y))−1.



Proof. Define the Ck function F : U × V → V by F (x, y) = f(x)− y.

Since D1F (x0, y0) = Df(x0) has bounded inverse, the Implicit Function Theorem gives
the existence of an open neighbourhood U1 × V0 ⊂ U × V of the point (x0, y0) and
g ∈ Ck(V0, U1) such that F (g(y), y) = 0 for all y ∈ V0.
That is, we have f(g(y)) = y for all y ∈ V0.
This implies that g is injective (if g(y1) = g(y2), then y1 = f(g(y1)) = f(g(y2)) = y2).

By restricting the codomain of g to U0 = g(V0) ⊂ U1, we obtain a bijective function g.

This implies that f : U0 → V0 is bijective: surjectivity, for y ∈ V0 there exists a unique
x ∈ U0 such that g(y) = x by the bijectivity of g, so that f(g(y)) = y; injectivity, for
f(x1) = f(x2) there are unique y1, y2 ∈ V0 such that g(y1) = x1 and g(y2) = x2 by the
bijectivity of g, so that y1 = f(g(y1)) = f(g(y2)) = y2 which implies that x1 = x2.

Thus f and g are inverses of each other, so that g(f(x)) = x for all x ∈ U0.

That U0 is open follows because U0 = g(V0) = f−1(V0) where V0 is open and f is
continuous.

Differentiation of f(g(y)) = y gives Df(g(y))Dg(y) = I, so that with Df(x0) having
bounded inverse, there exists (by Lemma 7.3.11) possibly smaller open neighbourhoods
U0 and V0 such that Dg(y) = Df(g(y))−1 for all y ∈ V0. �

Note. The condition that Df(x0) ∈ B(X, Y ) have a bounded inverse implies that
X and Y are not only isomorphic but also homeomorphic as Banach spaces. In most
applications of the Inverse Function Theorem you will notice that X = Y . The Inverse
Function Theorem implies that f ∈ Ck(U, V ) is a local diffeomorphism near each x0 ∈ U
for which Df(x0) ∈ GL(X).

Example. For a Banach space (X, ‖ · ‖) consider the function f : B(X)→ B(X) given
by

f(A) = I + A2.

That f(A) ∈ B(X) when A ∈ B(X) follows because

‖(I + A2)x‖ ≤ ‖Ix‖+ ‖A2x‖ ≤ ‖x‖+ ‖A‖2‖x‖ = (1 + ‖A‖2)‖x‖

implies that

‖I + A2‖ = sup

{
‖(I + A2)x‖
‖x‖

: x ∈ X, x 6= 0

}
≤ 1 + ‖A‖2.

A candidate for the derivative of f at A ∈ B(X) is the function LA ∈ L (B(X),B(X))
defined by

LA(H) = AH +HA.

That LA(H) belongs to B(X) for each H ∈ B(X) follows because

‖(AH +HA)x‖ ≤ ‖AHx‖+ ‖HAx‖ ≤ ‖A‖ ‖H‖ ‖x‖+ ‖H‖ ‖A‖ ‖x‖ = 2‖A‖ ‖H‖ ‖x‖



implies that

‖LA(H)‖ = sup

{
‖LA(H)x‖
‖x‖

: x ∈ X, x 6= 0

}
≤ 2‖A‖ ‖H‖.

For LA to be the derivative of f at A requires that LA be bounded, but this follows
because

‖LA(H)‖ ≤ ‖AH‖+ ‖HA‖ ≤ ‖A‖ ‖H‖+ ‖H‖ ‖A‖ = 2‖A‖ ‖H‖

implies that

‖LA‖ = sup

{
‖LA(H)‖
‖H‖

: H ∈ B(X), H 6= 0

}
≤ 2‖A‖.

Thus LA ∈ B(B(X),B(X)) and is the derivative of f at A because

f(A+H)− f(A)− LA(H) = I + (A+H)2 − I − A2 − AH −HA
= A2 + AH +HA+H2 − A2 − AH −HA
= H2

implies that

lim
H→0

‖f(A+H)− f(A)− LA(H)‖
‖H‖

= lim
H→0

‖H2‖
‖H‖

≤ lim
H→0

‖H‖2

‖H‖
= lim

H→0
‖H‖ = 0.

Thus f is differentiable on B(X) with derivative Df(A) = LA.

We cannot apply the Inverse Function Theorem to f at A = 0 because Df(A)H =
AH + HA = 0 for all H when A = 0, i.e., Df(A) is not invertible so it cannot have a
bounded inverse.

We can apply the Inverse Function Theorem to f at A = 3I because Df(A)H = AH +
HA = 6H when A = 3I, which has the bounded inverse H → (1/6)H.

Thus f is a local diffeomorphism near 3I, i.e., there are open neighbourhoods U0 of 3I
and V0 of f(3I) = 10I such that f : U → V is a diffeomorphism.

Note that f is not invertible on B(X) because it is not injective, i.e., f(3I) = f(−3I).

Theorem 7.4.12. The inverse and implicit function theorems are equivalent.

Proof. We have already derived the inverse function theorem from the implicit function
theorem.

So it remains to show that the implicit function theorem can be derived from the inverse
function theorem.

To this end for F ∈ Ck(U × V, Z) with F (x0, y0) = 0 and D2F (x0, y0) ∈ B(Y, Z) having
bounded inverse, let G : U × V → X × Z be the Ck function given by G(x, y) =
(x, F (x, y)).

Then

DG(x0, y0) =

[
I 0

D1F (x0, y0) D2F (x0, y0)

]
∈ B(X × Y,X × Z)



has the inverse

DG(x0, y0)
−1 =

[
I 0

−D2F (x0, y0)
−1D1F (x0, y0) D2F (x0, y0)

−1

]
∈ B(X × Z,X × Y ).

The boundedness of DG(x0, y0)
−1 follows from the boundedness of D2F (x0, y0)

−1 and
D1F (x0, y0).

By the Inverse Function Theorem, the function G is a local diffeomorphism on a open
neighbourhood U0 × V0 of (x0, y0).

Since G(x0, y0) = (x0, 0) and G(x, y) = (x, F (x, y)) on U0 × V0, the Ck function G−1 has
the form G−1(x, 0) = (x, f(x)) for a Ck function f that satisfies f(x0) = y0.

Hence (x, 0) = G(G−1(x, 0)) = G(x, f(x)) = (x, F (x, f(x))) so that F (x, f(x)) = 0 for all
x ∈ U0. �


