Math 346 Lecture #14
8.3 Measure Zero and Measurability

Our notion of volume or measure A gives the same value for the compact n-interval [a, b]
and the open n-interval

(a,b) = (ar,by) X -+ X (an, by).
This says that the missing faces of the open n-interval have measure zero.
8.3.1 Sets of Measure Zero
There are some basic properties we expect of the measure \ for subsets of R™ on which
it is defined.

1. For A and B in R™, if B C A then A\(B) < A(A). (This property is called mono-
tonicity.) This says that subsets of sets of measure zero have measure zero. Mono-
tonicity of A suggests that if (Cy)32; is a sequence of sets for which Cyy C Cy and
ACk) — 0 as k — oo, then

A (Dl ck) = lim A(Cy) =0,

which expresses the “continuity” of A on decreasing sequences of sets whose mea-
sures approach 0.
2. For A and B in R", not necessarily disjoint, there holds

AMAUB) < A\A) + A(B).

(This property, which by induction extends to finite unions, is called finite subad-
ditivity.) This suggest that if (Cx)?2, is a sequence of sets, then

) ([j ck> e

a property called countable subadditivity. [What would happen if the sets Cy
were pairwise disjoint? We could replace < with = in the countable subadditivity,
giving a property called countably additivity which is the key defining property
of a measure. Countable additivity implies finite additivity, i.e., if A and B are
disjoint, then A\(AU B) = A(A) + \(B).]

3. The empty set @) is a subset of R". It should have measure zero, i.e., A\(#) = 0.
(This property is called finiteness of the measure on at least one set, i.e., there
exists a set A for which A\(A) < o0.)

So far we only know how to compute the measure of n-intervals, but the properties listed
above suggest how to define sets of measure zero using compact, partially open, or open
n-intervals.

Definition 8.3.1. A set A C R™ has measure zero if for any € > 0 there exists a
countable collection of n-intervals (I;)s, such that

AC U I, and Z)\(Ik) < €.
k=1 k=1



Proposition 8.3.2. The following hold.

(i) Any subset of a set of measure zero has measure zero.
(ii) A singleton subset, i.e., {x} for x € R", has measure zero.

(iii) A countable union of sets of measure zero has measure zero.
Proof. (i) Suppose A is a set of measure zero.

Then for all € > 0 there exists a countable collection of n-intervals (/)52 such that

AcC U I}, and Z/\(Ik) < e.
k=1 k=1
For a subset B of A we then have
B C U I, and Z)‘(Ik) < €.
k=1 k=1

This says that B has measure zero.
(ii) This is HW (Exercise 8.11).
(iii) Suppose that (Cy)52, is a countable collection of sets of measure zero.

For each fixed & we have for € > 0 the existence of a countable collection of n-intervals
(1j,)52, for which

[e.9] o0 €
Ck C U Ij,k and Z)\(]j’k) < ?
j=1 =1
The collection (7;x)5%—, is a collection collection of n-intervals for which
Ueee U (U
k=1 k=1 \j=1

and

where we have used the geometric series with r = 1/2.

Thus the union of the countable many sets of measure zero has measure zero. ([l



Example 8.3.3. The Cantor middle thirds set C' C [0, 1] has measure zero.

The construction of C' starts with Cy = [0, 1], removes the open middle third subinterval
of Cp to obtain Cy = [0,1/3] U [2/3,1] C (.

The open middle thirds of the two subintervals in C; are removed to obtain
Cy=10,1/91U[2/9,1/3]U[2/3,7/9] U [8/9,1] C C4.

Continuing this pattern by induction we obtain Cj,; C C} where Cj consists of 2F

pairwise disjoint compact subintervals I; 5, j = 1,..., 2", each of which has length (1/3)*.

To apply the definition of measure zero, we declare [;; = ) for all j > 2.

The Cantor middle thirds set,
C=()Ck,
k=0

then has the properties of
OCOk_jLJlI]’k and jzl/\(]%k) =2 (3> = (3) .

Since (2/3)* goes to 0 as k — oo, we conclude that C'is a set of measure zero.

Definition 8.3.4. For a nonempty A C R”, two function f,g : A — R are said to be
equal almost everywhere on A, written f = g a.e.on A if the set

{teA:ft)#9(0)}

has measure zero.

Example (in lieu of 8.3.5). Consider the functions f,g : [0,1] — R defined by
f(t) =0 for all t € [0,1] and

() = 1 ifted,
T =0 ifte1\c,

where C' is the Cantor middle thirds set.
The functions f and ¢ differ on C' which has measure zero, so f = g a.e. on [0, 1].

Proposition 8.3.6. For a nonempty A C R™, the relation = a.e.on A is an equivalence
relation on the set of all functions from A to R.

The proof of this when A = [a,b] C R™ is HW (Exercise 8.12).

Definition 8.3.7. For a nonempty A C R", we say that a sequence of functions (f;,)%,
from A to R converges almost everywhere on A if the set

{t € A: (fr(t))p2, does not converge}

has measure zero. If for almost all t € A the sequence (fx(t))22; converges to f(t), then
we write fp — f a.e.on A.



Note. Convergence almost everywhere is about pointwise convergence. It does not
depend on the norm on the space of functions in which the sequence is.

Example 8.3.8. For the functions f, : [0,1] — R defined by

fa(t) = nXp0,1/m) ()

the sequence (f,,(0))32, does not converge because f,(0) =n — oo.

However for all t € (0,1], the sequence (f,(t))22, converges to 0 because eventually
fn(t) = 0 for sufficient large n, i.e., for fixed ¢t € (0, 1] there exists N € N such that for
all n > N there holds 1/n < t, so that for all n > N there holds f,(t) = 0.

The sequence (f,)22, converges almost everywhere to the zero function on [0, 1].

8.3.2 Measurability

The regulated integral applies to functions in Z([a,b],R), the closure (which is the
completion) of S([a,b],R) with respect to the L*-norm, i.e., functions that are the
uniform limits of step functions.

The Daniell-Lebesgue integral applies to functions in L'([a, b],R), the completion of
S([a, b], R) with respect to the L'-norm, i.e., functions that are equal almost everywhere
to the pointwise limits of L!-Cauchy sequences of step functions.

In both of these situations the functions we obtain are pointwise limits a.e.on [a,b] of
step functions. This motivates the following definitions.

Definition 8.3.9. A function f : [a,b] — R is called measurable if there exists a
sequence (si)52, of step functions such that sy — f a.e. on [a,b].

A set A C [a,b] is called measurable if its indicator or characteristic function x4 is
measurable.

Note 8.3.13. Measurable sets include compact n-intervals, bounded open sets, bounded
closed sets, and countable unions and intersections of bounded open or bounded closed
sets. For example the half-open half-closed interval (0, 1] is measurable because it is the
countable union of closed intervals:

01:61/k0

Said in another way, the characteristic function g 1) is the pointwise limit of the sequence
of step functions s, = X[1/k,0]-

Definition 8.3.10. Suppose a nonempty subset A C [a, b] is measurable. If f: A — R
satisfies fx4 € L'([a,b],R), then we write

/Af: " Ixa-

We define L'(A,R) to be the collection of functions f : A — R for which fy, €
L'([a,b], R).



We show through the next two results that the integral of f € L'(A,R) is independent
of the compact n-interval [a, b] that contains the measurable A.

Proposition 8.3.11. Suppose the measurable A is a subset of the compact n-intervals
[a,b] and [c,d] where [a,b] C [c,d]. Then fxa4 € L'([a,b],R) if and only if fya €
L'([c,d],R). Moreover there holds

fxa= Ixa
[a,b] [c,d]

Proof. Suppose fxa € L'([a,b],R).

Then there is a sequence (s,,)°2; of step functions on [a, b] such that (s,,)52, is L'-Cauchy
on [a,b] and s, — fxa a.e.on [a,b].

Extending every s, by zero to [c, d] gives step functions ¢, that satisfy ¢, — fxa a.e.on
e, d].

From the definition of the integral of a step function (the finite linear combination in R)
we have for all m,n € N that

/ ]tn—tm\:/ |Sn — Sm| and / tn:/ Sp.
[c,d] [a,b] [e,d] [a,b]

The first of these implies that (¢,,)2; is L'-Cauchy on [c, d], so that fx 4 = lim#, belongs
to L'([c,d], R).

The second implies that

fxa= Ixa.
[e,d] [a,b]

Now suppose that fxa € L'(c,d],R).
Then there is a sequence (t,,)>2; of step functions on [c,d] such that (¢,)%2, is L'-Cauchy
on [c,d] and ¢, — fxa a.e.on [c,d].
The functions s, = t, X[, are step functions on [a, b].
We show that (s,)22, is L'-Cauchy on [a, b].
Since (t,)%, is L'-Cauchy, for € > 0 there exists N € N such that for all n,m > N there
holds (on [c,d])
ltn — tmll1 <e.

Computing the L'-norm of s, — s, on [a, b] we have for all n,m > N that

/ 1S — Sm| :/ |t — tm|X[ab) S/ [tn — tm| < €.
[a,b] [a,b] [e,d]

Thus (s,)22, is L'-Cauchy on [a, b].

n=1

Since t,, — fxa a.e.on [c,d] and A C [a,b] C [c,d], we have that

Sn = taX[ap] = SXAX[ab = [Xa-



Thus fxa € L'([a,b],R).

Using t,, = fxa on [c,d] and s, = t,X[ab) — fXa on [a,b], we have

fXA = lim Sn
[a,b] 00 Jla,b]
= lim tnX[a,b]
n—oo [a,b]
= lim LnX[a,b]
n—oo [C,d]
= fXAX[a,b}
[c.d]
= fxa.
[c.d]
This completes the proof. 0]

Corollary 8.3.12. Suppose A is a measurable subset of [c,d] N [¢/,d']. Then fx, €
L'([c,d],R) if and only if fya € L'([¢,d'],R).

Proof. The intersection [c,d] N [c/,d’] is a compact n-interval [a, b].
We have that [a,b] C [c,d] and [a,b] C [¢/,d'].

We apply Proposition 8.3.11 to these inclusions to obtain that fx4 € L'([a, b], R) if and
only if fxa € L'([c,d],R), with

fxa= fxa,
[a,b] [c,d]

and fxa € L'([a,b],R) if and only if fx4 € L*([¢,d],R) with

fxa= Ixa.
[a,b] [¢/,d’]

This completes the proof. 0]



