
Math 346 Lecture #16
8.5 Fatou’s Lemma and the Dominated Convergence Theorem

The monotone convergence theorem for sequences of L1 functions is the key to proving
two other important and powerful convergence theorems for sequences of L1 functions,
namely Fatou’s Lemma and the Dominated Convergence Theorem.

Nota Bene 8.5.1. All three of the convergence theorems give conditions under which a
sequence of L1-functions converging pointwise a.e. is L1-Cauchy. These conditions, when
applied to pointwise convergent sequences of regulated-integrable or Riemann-integrable
functions, fail to guarantee that the limit function is regulated-integrable or Riemann-
integrable, respectively. A counterexample for all three of the convergence theorems for
the Riemann integral is the sequence of bounded functions that converge pointwise to
the Dirichlet function on [0, 1]. For an enumeration (qk)∞k=1 of the rational numbers in
[0, 1], the functions fk, defined by fk(t) = 1 when t ∈ {q1, . . . , qk} and f(t) = 0 otherwise,
form a monotone increasing sequence converging to the Dirichlet function f , defined by
f(t) = 1 if t ∈ Q ∩ [0, 1] and f(t) = 0 otherwise. But the Dirichlet function is not
Riemann-integrable because any upper sum is 1 while any lower sum is 0. This means
that to use the three convergence theorems we must work in an L1-space of functions.

8.5.1 Fatou’s Lemma.

We will tacitly make use of the following facts about infimums and supremums: For
nonempty subsets A and B of R, if A ⊂ B, then inf A ≥ inf B and supA ≤ supB.

Definition. The limit inferior of a sequence of real numbers (xk)∞k=1 is defined to be

lim inf
k→∞

xk = lim
k→∞

(
inf
m≥k

xm

)
.

The limit exists (it might be infinite) because the sequence yk = infm≥k xk is monotone
increasing (technically monotone nondecreasing).

The limit superior of (xk)∞k=1 is defined to be

lim sup
k→∞

xk = lim
k→∞

(
sup
m≥k

xk

)
.

The limit exists (it might be infinite) because the sequence zk = supm≥k xk is monotone
decreasing (technically monotone nonincreasing).

The liminf and limsup of a sequence of real numbers aways exist even when the limit of
the sequence does not, and there always holds lim supk→∞ ak ≥ lim infk→∞ ak.

A sequence (ak)∞k=1 of real numbers converges to a ∈ R if and only if

lim inf
k→∞

ak = a = lim sup
k→∞

ak.

Also
lim inf
k→∞

(−ak) = lim sup
k→∞

ak and lim sup
k→∞

(−ak) = lim inf
k→∞

ak.



Definition. For a sequence of real-valued functions (fk)∞k=1 with domain E, we define
lim infk→∞ fk to be the function on E defined by(

lim inf
k→∞

fk

)
(t) = lim inf

k→∞
fk(t)

with the possibility of lim infk→∞ fk(t) being infinite for some (or all) t ∈ E.

The function lim supk→∞ fk of sequence of real-valued functions (fk)∞k=1 is defined simi-
larly, and can be infinite for some or all t ∈ E.

Definition. A measurable function f with domain [a, b] and codomain R is said to be
almost everywhere nonnegative, written f ≥ 0 a.e. on [a, b], if the set

{x ∈ [a, b] : f(x) < 0}

have measure zero.

Lemma. For a sequence (fk)∞k=1 of almost everywhere nonnegative integrable functions
with domain [a, b], the function f : [a, b]→ R defined by

f(x) = inf{fk(x) : k ∈ N}

is almost everywhere nonnegative and integrable.

Proof. For each k ∈ N define the function gk : [a, b]→ R by

gk(x) = min{f1(x), . . . , fk(x)}.

Since each of f1, . . . , fk is almost every nonnegative, the function gk is also almost every-
where nonnegative.

By Proposition 8.4.2 part (iii) and induction, the function gk is integrable.

Thus for all k ∈ N we have ∫
[a,b]

gk ≥ 0.

Since min{f1(x), . . . , fk(x)} ≥ min{f1(x), . . . , fk(x), fk+1(x)}, the sequence (gk)∞k=1 is
monotone decreasing (technically monotone nonincreasing).

By the Monotone Convergence Theorem, we have

lim
k→∞

gk ∈ L1([a, b],R).

Since for all x ∈ [a, b] we have

f(x) = inf
l∈N

fl(x) = lim
k→∞

gk(x)

we obtain the integrability of f .

Since each gk is almost everywhere nonnegative, and the countable union of sets of
measure zero is a set of measure zero, we have f ≥ 0 almost everywhere on [a, b]. �



Theorem 8.5.2 (Fatou’s Lemma). For a sequence (fk)∞k=1 of integrable functions
on [a, b] that are almost everywhere nonnegative, if

lim inf
k→∞

∫
[a,b]

fk <∞,

then

(i) lim inf
k→∞

fk ∈ L1([a, b],R), and

(ii)

∫
[a,b]

lim inf
k→∞

fk ≤ lim inf
k→∞

∫
[a,b]

fk.

Proof. For each k ∈ N define the almost every nonnegative function hk : [a, b]→ R by

hk(x) = inf
l≥k

fl(x).

Since each fl is integrable and almost everywhere nonnegative the Lemma implies that
every hk is almost everywhere nonnegative and integrable.

The sequence (hk)∞k=1 is monotone increasing (technically monotone nondecreasing) with

lim
k→∞

hk = lim inf
l→∞

fl.

Because (hk)∞k=1 is monotone increasing we have

lim
k→∞

hk = lim inf
k→∞

hk.

For each k ∈ N there holds hk(x) = inf{fl(x) : l ≥ k} ≤ fk(x) for all x ∈ [a, b].

Since hk and fk are both integrable we have Proposition 8.4.2 part (i) for all k ∈ N that∫
[a,b]

hk ≤
∫
[a,b]

fk.

These imply that

lim inf
k→∞

∫
[a,b]

hk ≤ lim inf
k→∞

∫
[a,b]

fk.

[This uses the property that if (ak)∞k=1 and (bk)∞k=1 are two sequences of real numbers
such that ak ≤ bk for all k ∈ N, then lim infk→∞ ak ≤ lim infk→∞ bk (and lim supk→∞ ak ≤
lim supk→∞ bk).]

Since each hk is integrable and (hk)∞k=1 is monotone increasing, we have by Proposition
8.4.2 part (i) that for all k ≥ n there holds∫

[a,b]

hn ≤
∫
[a,b]

hk.

This implies for each n ∈ N that ∫
[a,b]

hn ≤ inf
k≥n

∫
[a,b]

hk,



from whence we get ∫
[a,b]

hn ≤ lim inf
k→∞

∫
[a,b]

hk.

By hypothesis there exists M ∈ R such that

lim inf
k→∞

∫
[a,b]

fk ≤M.

Thus we obtain for all n ∈ N that∫
[a,b]

hn ≤ lim inf
k→∞

∫
[a,b]

hk ≤ lim inf
k→∞

∫
[a,b]

fk ≤M.

The sequence (hn)∞n=1 satisfies the hypotheses of the Monotone Convergence Theorem,
and we obtain the integrability of

lim
n→∞

hn = lim inf
n→∞

hn = lim inf
n→∞

fn

and

lim
n→∞

∫
[a,b]

hn =

∫
[a,b]

lim
n→∞

hn.

Putting all the pieces together we obtain∫
[a,b]

lim inf
n→∞

fn =

∫
[a,b]

lim
n→∞

hn

= lim
n→∞

∫
[a,b]

hn

≤ lim
n→∞

inf
k≥n

∫
[a,b]

hk

≤ lim
n→∞

inf
k≥n

∫
[a,b]

fk

= lim inf
n→∞

∫
[a,b]

fn.

This completes the proof. �

Remark 8.5.3. To see why Fatou’s Lemma holds, consider two nonnegative integrable
functions f0 and f1 on a compact interval [a, b] of R.

Because

inf{f0, f1} = min{f0, f1} ≤ f0 and inf{f0, f1} = min{f0, f1} ≤ f1,

and because min{f0, f1} is integrable by Proposition 8.4.2. part (iii), we by part Propo-
sition 8.4.2 part (i) that∫

[a,b]

inf{f0, f1} ≤
∫
[a,b]

f0 and

∫
[a,b]

inf{f0, f1} ≤
∫
[a,b]

f1,



which implies that ∫
[a,b]

inf{f0, f1} ≤ inf

{∫
[a,b]

f0,

∫
[a,b]

f1

}
.

Fatou’s Lemma is the analogous result for sequences of integrable almost everywhere
nonnegative functions.

Example (in lieu of 8.5.4). There are sequences of functions for which strict inequal-
ity holds in Fatou’s Lemma.

The sequence of nonnegative integrable functions (fn)∞n=1 on the domain [0, 1] defined by
fn = χ[0,1/2) for n odd and fn = χ[1/2,1] for n even, satisfies

lim inf
n→∞

∫
[0,1]

fn = 1/2

because the integral of fn is 1/2 for every n.

Since lim inf fn(t) = 0 for every t ∈ [0, 1] we get∫
[0,1]

lim inf
n→∞

fn = 0 <
1

2
= lim inf

n→∞

∫
[0,1]

fn.

8.5.2 Dominated Convergence

We will use Fatou’s Lemma to obtain the dominated convergence theorem of Lebesgue.
This convergence theorem does not require monotonicity of the sequence (fk)∞k=1 of in-
tegrable functions, but only that there is an L1 function g that dominates the pointwise
a.e. convergent sequence (fk)∞k=1, i.e., |fk| ≤ g for all k.

Theorem 8.5.5 (Dominated Convergence Theorem). Suppose (fk)∞k=1 is a se-
quence of real-valued integrable functions on the domain [a, b] that converges pointwise
almost everywhere to a function f : [a, b]→ R. If there exists g ∈ L1([a, b],R) such that
|fk| ≤ g a.e. on [a, b] for all k (this requires that g be nonnegative almost everywhere),
then f ∈ L1([a, b],R) and

lim
k→∞

∫
[a,b]

fk =

∫
[a,b]

lim
k→∞

fk =

∫
[a,b]

f.

Proof. The hypothesis |fk| ≤ g a.e. on [a, b] for all k implies that the functions hk = g−fk
are nonnegative almost everywhere.

Also by hypotheses, the functions fk and g are integrable so the functions hk are integrable
as well.

Since g ∈ L1([a, b],R), i.e., ‖g‖1 <∞, we obtain for all k ∈ N that∫
[a,b]

hk =

∫
[a,b]

(g − fk) =

∫
[a,b]

|g − fk| ≤
∫
[a,b]

(
|g|+ |fk|

)
≤
∫
[a,b]

2g ≤ 2‖g‖1 <∞.

Thus the sequence (hk)∞k=1 satisfies the hypotheses of Fatou’s Lemma, and we get the
integrability of

g − f = g − lim
k→∞

fk = lim
k→∞

(g − fk) = lim inf
k→∞

(g − fk) = lim inf
k→∞

hk.



This implies the integrability of f because

f = g − lim inf
k→∞

hk

which is a linear combination of two integrable functions and hence integrable.

By the other conclusion of Fatou’s Lemma we have∫
[a,b]

g −
∫
[a,b]

f =

∫
[a,b]

(g − f)

=

∫
[a,b]

(
g − lim

k→∞
fk

)
=

∫
[a,b]

(
g − lim sup

k→∞
fk

)
=

∫
[a,b]

lim inf
k→∞

(g − fk)

=

∫
[a,b]

lim inf
k→∞

hk

≤ lim inf
k→∞

∫
[a,b]

hk

= lim inf
k→∞

∫
[a,b]

(g − fk)

=

∫
[a,b]

g − lim sup
k→∞

∫
[a,b]

fk.

Since the integral of g is finite, we can cancel it from both sides to get

−
∫
[a,b]

f ≤ − lim sup
k→∞

∫
[a,b]

fk.

which yields

lim sup
k→∞

∫
[a,b]

fk ≤
∫
[a,b]

f.

Applying the above argument to the sequence of functions h̃k = g + fk results in the
inequality ∫

[a,b]

f ≤ lim inf
k→∞

∫
[a,b]

fk.

Since the liminf is always smaller or equal to the limsup of a sequence, we have that

lim
k→∞

∫
[a,b]

fk

exists and is equal to
∫
[a,b]

f =
∫
[a,b]

limk→∞ fk. �



Example (in lieu of 8.5.7). For any T > 0, can you guess the value of

lim
n→∞

∫ T

0

sin(1− e−x/n)e−x/2 dx?

There is little hope of finding an explicit antiderivative of the integrand and applying the
Fundamental Theorem of Calculus.

Instead we consider the pointwise limit function of the sequence

fn(x) = sin(1− e−x/n)e−x/2.

By continuity we have for all x ∈ [0, T ] that

lim
n→∞

sin(1− e−x/n)e−x/2 = sin(1− e0)e−x/2 = 0.

This implies that ∫ T

0

lim
n→∞

sin(1− e−x/n)e−x/2 dx = 0.

If we can find an L1 function g : [0, T ]→ R that dominates (fn)∞n=1, then we have by the
Dominated Convergence Theorem that

lim
n→∞

∫ T

0

sin(1− e−x/n)e−x/2 dx =

∫ T

0

lim
n→∞

sin(1− e−x/n)e−x/2 dx = 0.

Since
|fn(x)| ≤ | sin(1− e−x/n)e−x/2| ≤ e−x/2.

a candidate for the dominating function is the continuous

g(x) = e−x/2 ≥ 0.

This candidate belongs to L1([0, T ],R) for all T > 0 because

‖g‖1 =

∫ T

0

g dx =

∫ T

0

e−x/2 dx =

[
e−x/2

−1/2

]T
0

= 2− 2e−T/2 ≤ 2.

Thus by the Dominated Convergence Theorem we have

lim
n→∞

∫ T

0

sin(1− e−x/n)e−x/2 dx = 0.

The Dominated Convergence Theorem is used to prove the following result about con-
vergence and integration of a series.

Proposition 8.5.8. If (fk)∞k=1 ⊂ L1([a, b],R) satisfies

∞∑
k=1

∫
[a,b]

|fk| <∞,



then the series
∞∑
k=1

fk

converges pointwise a.e. on [a, b] to an integrable function and∫
[a,b]

∞∑
k=1

fk =
∞∑
k=1

∫
[a,b]

fk.

Proof. Suppose
∞∑
k=1

∫
[a,b]

|fk| <∞.

This implies (by HW, Exercise 8.16) that for almost every x ∈ [a, b] the series
∞∑
k=1

|fk(x)|

converges, and the resulting series
∞∑
k=1

|fk| ∈ L1([a, b],R).

The convergence for almost all x ∈ [a, b] of
∑∞

k=1 |fk(x)| (this is absolute convergence)
implies by Proposition 5.6.13 that for almost all x ∈ [a, b] we have convergence of

∞∑
k=1

fk(x).

The partial sums

hk(x) =
k∑

l=1

fl(x)

are dominated by the L1 function
∑∞

k=1 |fk(x)| because

|hk(x)| ≤
k∑

l=1

|fl(x)| ≤
∞∑
l=1

|fl(x)|.

By the Dominated Convergence Theorem we have

lim
k→∞

∫
[a,b]

hk(x) = lim
k→∞

∫
[a,b]

k∑
l=1

fl(x) =

∫
[a,b]

lim
k→∞

k∑
l=1

fl(x)

=

∫
[a,b]

lim
k→∞

hk(x) =

∫
[a,b]

∞∑
l=1

fl(x).

Since the partial sum hk(x) is a finite sum we have

lim
k→∞

∫
[a,b]

hk(x) = lim
k→∞

∫
[a,b]

k∑
l=1

fl(x) = lim
k→∞

k∑
l=1

∫
[a,b]

fk(x) =
∞∑
l=1

∫
[a,b]

fk(x),

which gives the result. �


