Math 346 Lecture #21
10.3 Parameterized Manifolds

The idea of a parameterized manifold is a higher-dimensional analogue of a smoothly
parameterized curve.

We assume throughout this lecture that (X, | - ||x) is Banach space.

Definition 10.3.1. Let U be an open subset of R™. We say that o € C*(U, X) is a
parameterized m-manifold in X if « is injective and at each point u € U the derivative
Da(u) € B(R™, X) is injective.

The image M = o(U) C X is a parametrized m-manifold.
A parameterized 2-manifold is called a parameterized surface.

A parameterized 1-manifold is called a parameterized curve and the condition that Da/(u)
be injective is equivalent to Da(u) # 0.

Remark 10.3.2. The injectivity of Da(u) at each u € U implies that m < dim(X)
because Da(u)(R™) is an m-dimensional subspace of X. In particular if X = R" with
n > m, then the rank of any matrix representation of Da(u) is m.

Example 10.3.3. (iii) For open U C R™ and f € C*(U,R), the graph of f,
{(u, f(u)) eR" xR:ueU},
is a parameterized m-manifold because (1) the function a: U — R™ x R given by
a(u) = (u, f(w))
belongs to C'(U,R™ x R), (2) the function « is injective, i.e., if a(u) = a(v), then
(w, f(w) = (v, £(v))
which implies that u = v, and (3) Da(u) is injective for each u € U, i.e., Da(u) is the

(m 4+ 1) x m matrix with the top m x m submatrix being I and the (m + 1)-row being
D f(u), so that Da(u) has rank m.

10.3.1 Parameterizations and Equivalent Manifolds

Analogous to smooth parameterized curves, there are equivalence relations on parame-
terization manifolds, whose equivalent classes are called manifolds and have properties
independent of the parameterization chosen.

Definition 10.3.4. Two parameterized m-manifolds aq : Uy — X and as : Uy — X
are called equivalent if there exists a diffeomorphism ¢ : U; — U, such that

(i) det(D¢(u)) > 0 for all u € Uy, and

(i) ae =y 0.

In this case we say that as is a orientation-preserving reparameterization of aj.

One can show that this equivalence is an equivalence relation.



Each equivalence class is called an oriented m-manifold, or if the dimension m is under-
stood from the context, an oriented manifold.

If we replace condition (b) with det(D¢(u)) # 0, then by the continuity of D¢ and the
continuity of the determinant on the entries of the matrix, we either have det(D¢(u)) > 0
for all u € Uy or det(D¢(u)) < 0 for all u € Uy.

When det(D¢(u)) < 0 for all u € U; we say the reparameterization ¢ is orientation-
reversing.

One can show that the equivalence with the replaced condition (b) is an equivalence
relation.

Each equivalence class for this equivalence relation is called an unoriented m-manifold or
simply an m-manifold.

Example (in lieu of 10.3.5). For U = (0,2r) x (0,7) C R?, consider the C" map
a : U — R? defined by
a(f, ) = (cosfsin v, sin O sin @, cos ).

We show that « is injective.

Setting (61, 1) = (b, pa) implies that cos p; = cos s.

Hence ¢ = 9 because cos is injective on (0, 7).

With 1 = @2 we have sin ¢y = sin o and since ¢; € (0, 7) that sin; # 0.

From cos 6 sin¢; = cosfysinys and sinf;sinp; = sinfysinpy we then get cosf, =
cos By and sin #; = sin 6.

If 6; and 6, are in different quadrants, then either cos#; # cos s or sin 6; # sin 6y would
hold, a contradiction.

So 0, and 05 are in the same quadrant.
Monotonicity of cos and sin in the same quadrant implies that 6; = 6,.
Thus « is injective.

The derivative
—sinfsing cosfcosy

Da(0,p) = | cosfsing sinfcosgp
0 —sing

has rank 2 for all (6, ) € U because the term —sin ¢ # 0 in the second column making
the two columns linearly independent.

Thus « is a parameterized 2-manifold or surface in R3.

The image of « is a subset of the 2-sphere in R? because

(cos O sin ) + (sin #sin ¢)* + cos? p = (cos? § + sin” ) sin® ¢ + cos® ¢
= sin? ¢ + cos? ¢
=1



In fact a(U) is almost all of the 2-sphere; the image is missing a set of measure zero,
namely the smooth parameterized curve C' = {(x,0,v/1 —22) € R®: x € [0, 1]} which is
the longitudinal arc from the north pole to the sole pole in the zz-plane over x > 0.

For W = (0,7) x (0,7) C R?, the C* function 8 : W — R? defined by
B(&,n) = (cos 2§ sinn, sin 2€ sinn, — cos )
is injective, the rank of

—2sin2&sinn cos 2§ cosn
DpB(&,n) = | 2cos2€sinn  sin2€ cosn
0 sinn

is 2 at every point (n,£) € W, and (W) = a(U).

The parameterized 2-manifold § is an orientating reversing reparameterization of the
parameterized 2-manifold « because for the diffeomorphism ¢ : U — W given by

gb(e’ 90) = (0/27 ™= 90)

we have

(Bo@)(8,p) = (cos2(8/2)sin(m — ), sin2(0/2) sin(r — ), — cos(m — ¢))

= (cos @ sin p, sin @ sin p, cos @)
= a(f,¢)
because sin(m — ¢) = sin ¢ and cos(m — @) = — cos , and

det(De(8, ) = det [162 _01} — _1/2<0

for all (0, ) € U.
10.3.2 Tangent Spaces and Normals

For two parameterizations o and 5 of a manifold M, the derivatives Do and D[ are not
usually the same, but as we show, their images are the same.

Definition 10.3.6. For a parameterized m-manifold o : U € R™ - M C X, and a

point p = a(u) € M, the tangent space T, M of M at p is the image of the derivative
Da(u) € B(R™, X), ie.,

T,M = Z(Da(u)) = {Da(u)v:veR™}
Note. Because Da(u) is injective, if vq,...,V,, is a basis for R™, then
Da(u)vy, ..., Da(u)v,,

is a basis for T, M.



Example (in lieu of 10.3.7). Consider again, for U = (0,27) x (0,7) C R?, the
parameterized 2-manifold o : U — M C R? given by

a(f, ) = (cosfsin g, sin O sin ¢, cos p).
The point p = (—1/4/2,0,1/y/2) € M is a(x,7/4). Since

0 —1/v2
Da(m,7/4) = |—1/V/2 0
0 —1/V2

a basis for T,M is

0 —1/V/2
Da(m,m/4)e; = | —1/v/2| and Da(r, 7 /4)ey = 0
0 —1/V2

For the reparameterization g : W — M given by

B(&,n) = (cos 2§ sinn, sin 2€ sinn, — cos )

where W = (0,7) x (0,7), the point p = (=1/v/2,0,1/v/2) is B(7/2,37/4), i.e., using
the orientating reversing reparameterization ¢ : U — W, we have

o(m,w/4) = (n/2,m —w/4) = (n/2,37/4).
Since
0 1/v2
DB(r/2,3n/4) = | -2/v2 0
0 1/V2
a basis for T, M is

0 1/v/2
DB(7/2,3n/4)e; = | —-2/v/2| and DB(n/2,3m/4)es = | 0
0 1/v2

One readily sees that Z(Df (/2,37 /4)) and Z(Da(m,m/4)) are the same subspace.

Proposition 10.3.8. The tangent space T, M is independent of the parameterization
and of the orientation.

Proof. For open U,W € R™, suppose a : U — M and g : W — M are equivalent
parameterizations of the unoriented manifold M C X.

Then there exists a diffeomorphism ¢ : U — W such that 5o ¢ = a. [The book writes
¢ = 7! o a which is correct because 8 : W — X is injective, so that the restriction
B : W — M is invertible, but then the book differentiates 5~! : M — W which can be
done, but we have only learned how to differentiate functions defined on open subsets of



Banach spaces, and unfortunately M is not in general an open subset of X. We proceed
without using the derivative of 371.]

For p € M there are unique u € U and w € W such that a(u) = p = f(w); in fact
w = ¢(u).

Since B o0 ¢ = o where 3, ¢, and « are C', we have

Da(u) = D(B o ¢)(u) = DB(¢(u)) Dp(u) = DF(w) D (u).
To show that Z(Dp(w)) = Z(Da(u)), we take x € Z(Da(u)).

By the injectiveness of Da(u) there exists a unique v € R™ such Da(u)v = x.
Then
x = Dafu)(¥) = DA(w) Do)y = DAw) (Do(u)v),
which says that x € Z(Dp(w)).
This gives Z(Da(u)) C Z(Dp(w)).
Now let x € Z(Dj(w)).
By the injectiveness of DF(w) there exists a unique v € R" such that x = DS(w)v.
Since ¢ : U — W is a diffeomorphism, the map D¢(u) € Z(R™) is an isomorphism
because differentiating (¢! o ¢)(z) = z gives

D¢ (6(2)) Do(z) = 1,
which says that D¢(z) is invertible linear map.

Thus there exists a unique y € R™ such that D¢(u)y = v.
This implies that

x = DB(w)v = DA(w)Dé(w)y = DB(6(w)) Dé(u)y = Dafu)y.
which says that x € Z(Da(u)).

This gives the other inclusion Z(Dj3(w)) C Z(Da(u)). O

Remark 10.3.9. The tangent space T, M of a manifold M at p € M is a vector subspace
of X. One often draws the tangent space as a hyperplane touching and tangent to the
manifold at the point p. This is technically incorrect since the hyperplane is not a vector
subspace. We get around this technicality by translation: the hyperplane that touches
and is tangent to M at P is the translation

p+1T,M={p+x:xeT,M}.

Remark. In the case that M is a 2-manifold or surface in X = R?, we can use the cross
product on the inner product space R® with the standard inner product to construct a
normal vector to M. Recall that in standard coordinates on R?, the cross product of two
vectors a = (aq, az, az) and b = (by, by, b3) is the vector

a X b = (agbs — asby, agby — a1bs, a1by — asby).



The cross product a x b has the property that it is orthogonal to both a and b. The
norm of a X b depends on the norms of a and b because

la > bl = [[a][ |b]| sin 6

where 6 € [0,7) is the angle between a and b. Normalizing the cross product gives a
vector of length one that no longer depends on the lengths of a and b.

Definition 10.3.10. For a surface a : U C R? — R3, the unit normal of M at p = a(u)

is the vector
Da(u)e; x Da(u)eq

~ |[Da(w)e; x Da(u)es|

Oftentimes we will write N instead of N(p).

N(p)

Proposition 10.3.11. The unit normal N of a surface M in R3 depends only on the
orientation of M. If the orientation of M is reversed, then N is negated.

Proof. For a surface M C R? and open sets U,V in R*, let a: U — M and B: W C M
be parameterizations of M.

Then there exists a diffeomorphism ¢ : U — W such that fo¢ = a with det(D¢(u)) # 0
for all u € U.

For p € M there exist unique u € U and w € W such that a(u) = p = B(w), i.e,
w = ¢(u).
Since each of 3, ¢, and « is C*, we have by the Chain Rule that

Da(u) = D(B o ¢)(u) = DB(¢(u))Dp(u) = DB(w)Dé(u).
This implies for i = 1,2 that
Da(u)e; = DB(w)D(u)e;.
Thus we have that
Da(u)e; x Da(u)e, = DB(w)Dé(u)e; x DB(w)De(u)es.

By a property of the cross product given in Proposition C 3.2 (in the Appendix of the
book), there holds

DB(w)De(u)er x DB(w)Do(u)e, = det (Do (w)) (DA(w)er x DB(w)es).

This implies that

Da(u)e; x Da(u)eq _ det(D(n)) (DB(w)er x DB(w)es)
[Da(u)e; x Da(u)ey||  ||det(De(u)) (DB(w)er x DB(w)es)|]
_ det(Do(u))  DB(w)e; x DB(w)ey
|det (Do (u))| |1DB(w)er x DB(w)es||



The unit normal vectors are the same when det (qu(u)) > 0, i.e., when f is an orientation
preserving reparameterization of «.

The unit normal vectors are the negatives of each other when det (D(b(u)) < 0, i.e., when
[ is an orientation reversing reparameterization of a. 0

Example. Consider again the parameterizations o : U — M and 3 : W — M of the
surface M given by
a(f, ) = (cosfsin g, sin O sin @, cos )

for (0,¢) € U = (0,27) x (0,7) and
B(&,n) = (cos 2§ sinn, sin 2€ sinn, — cos )

for (¢,m) e W = (0,7) x (0, ).
The point p = (—1/v/2,0,1/v2) = a(r,7/4) = B(n/2,37/4), for which

0 —1/4/2
Da(m,m/4)e; = | —1/v/2| and Da(r, 7 /4)e; = 0
0 —1/V2
and
0 1/v2
DB(1/2,3n/4)e; = |—2/v/2| and DB(x/2,3n/4)=| 0 |.
0 1/v2

Computing the unit normals at p for each parameterization we have for a that

(1/2,0,-1/2) -
N = A (1/3/2,0,-1/v/2),
and for § that
No ELOD (=1/v/2,0,1/V/2).

V2

As predicted by Proposition 10.3.11, the unit normals are the negatives of each other
because [ is an orientation reversing reparameterization of a.



