
Math 346 Lecture #21
10.3 Parameterized Manifolds

The idea of a parameterized manifold is a higher-dimensional analogue of a smoothly
parameterized curve.

We assume throughout this lecture that (X, ‖ · ‖X) is Banach space.

Definition 10.3.1. Let U be an open subset of Rm. We say that α ∈ C1(U,X) is a
parameterized m-manifold in X if α is injective and at each point u ∈ U the derivative
Dα(u) ∈ B(Rm, X) is injective.

The image M = α(U) ⊂ X is a parametrized m-manifold.

A parameterized 2-manifold is called a parameterized surface.

A parameterized 1-manifold is called a parameterized curve and the condition that Dα(u)
be injective is equivalent to Dα(u) 6= 0.

Remark 10.3.2. The injectivity of Dα(u) at each u ∈ U implies that m ≤ dim(X)
because Dα(u)(Rm) is an m-dimensional subspace of X. In particular if X = Rn with
n ≥ m, then the rank of any matrix representation of Dα(u) is m.

Example 10.3.3. (iii) For open U ⊂ Rm and f ∈ C1(U,R), the graph of f ,

{(u, f(u)) ∈ Rm × R : u ∈ U},

is a parameterized m-manifold because (1) the function α : U → Rm × R given by

α(u) = (u, f(u))

belongs to C1(U,Rm × R), (2) the function α is injective, i.e., if α(u) = α(v), then

(u, f(u)) = (v, f(v))

which implies that u = v, and (3) Dα(u) is injective for each u ∈ U , i.e., Dα(u) is the
(m + 1)×m matrix with the top m×m submatrix being I and the (m + 1)-row being
Df(u), so that Dα(u) has rank m.

10.3.1 Parameterizations and Equivalent Manifolds

Analogous to smooth parameterized curves, there are equivalence relations on parame-
terization manifolds, whose equivalent classes are called manifolds and have properties
independent of the parameterization chosen.

Definition 10.3.4. Two parameterized m-manifolds α1 : U1 → X and α2 : U2 → X
are called equivalent if there exists a diffeomorphism φ : U1 → U2 such that

(i) det(Dφ(u)) > 0 for all u ∈ U1, and

(ii) α2 = α1 ◦ φ.

In this case we say that α2 is a orientation-preserving reparameterization of α1.

One can show that this equivalence is an equivalence relation.



Each equivalence class is called an oriented m-manifold, or if the dimension m is under-
stood from the context, an oriented manifold.

If we replace condition (b) with det(Dφ(u)) 6= 0, then by the continuity of Dφ and the
continuity of the determinant on the entries of the matrix, we either have det(Dφ(u)) > 0
for all u ∈ U1 or det(Dφ(u)) < 0 for all u ∈ U1.

When det(Dφ(u)) < 0 for all u ∈ U1 we say the reparameterization φ is orientation-
reversing.

One can show that the equivalence with the replaced condition (b) is an equivalence
relation.

Each equivalence class for this equivalence relation is called an unoriented m-manifold or
simply an m-manifold.

Example (in lieu of 10.3.5). For U = (0, 2π) × (0, π) ⊂ R2, consider the C1 map
α : U → R3 defined by

α(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ).

We show that α is injective.

Setting α(θ1, ϕ1) = α(θ2, ϕ2) implies that cosϕ1 = cosϕ2.

Hence ϕ1 = ϕ2 because cos is injective on (0, π).

With ϕ1 = ϕ2 we have sinϕ1 = sinϕ2 and since ϕ1 ∈ (0, π) that sinϕ1 6= 0.

From cos θ1 sinϕ1 = cos θ2 sinϕ2 and sin θ1 sinϕ1 = sin θ2 sinϕ2 we then get cos θ1 =
cos θ2 and sin θ1 = sin θ2.

If θ1 and θ2 are in different quadrants, then either cos θ1 6= cos θ2 or sin θ1 6= sin θ2 would
hold, a contradiction.

So θ1 and θ2 are in the same quadrant.

Monotonicity of cos and sin in the same quadrant implies that θ1 = θ2.

Thus α is injective.

The derivative

Dα(θ, ϕ) =

− sin θ sinϕ cos θ cosϕ
cos θ sinϕ sin θ cosϕ

0 − sinϕ


has rank 2 for all (θ, ϕ) ∈ U because the term − sinϕ 6= 0 in the second column making
the two columns linearly independent.

Thus α is a parameterized 2-manifold or surface in R3.

The image of α is a subset of the 2-sphere in R3 because

(cos θ sinϕ)2 + (sin θ sinϕ)2 + cos2 ϕ = (cos2 θ + sin2 θ) sin2 ϕ+ cos2 ϕ

= sin2 ϕ+ cos2 ϕ

= 1.



In fact α(U) is almost all of the 2-sphere; the image is missing a set of measure zero,
namely the smooth parameterized curve C = {(x, 0,

√
1− x2) ∈ R3 : x ∈ [0, 1]} which is

the longitudinal arc from the north pole to the sole pole in the xz-plane over x ≥ 0.

For W = (0, π)× (0, π) ⊂ R2, the C1 function β : W → R3 defined by

β(ξ, η) = (cos 2ξ sin η, sin 2ξ sin η,− cos η)

is injective, the rank of

Dβ(ξ, η) =

−2 sin 2ξ sin η cos 2ξ cos η
2 cos 2ξ sin η sin 2ξ cos η

0 sin η


is 2 at every point (η, ξ) ∈ W , and β(W ) = α(U).

The parameterized 2-manifold β is an orientating reversing reparameterization of the
parameterized 2-manifold α because for the diffeomorphism φ : U → W given by

φ(θ, ϕ) = (θ/2, π − ϕ)

we have

(β ◦ φ)(θ, ϕ) = (cos 2(θ/2) sin(π − ϕ), sin 2(θ/2) sin(π − ϕ),− cos(π − ϕ))

= (cos θ sinϕ, sin θ sinϕ, cosϕ)

= α(θ, ϕ)

because sin(π − ϕ) = sinϕ and cos(π − ϕ) = − cosϕ, and

det(Dφ(θ, ϕ)) = det

[
1/2 0
0 −1

]
= −1/2 < 0

for all (θ, ϕ) ∈ U .

10.3.2 Tangent Spaces and Normals

For two parameterizations α and β of a manifold M , the derivatives Dα and Dβ are not
usually the same, but as we show, their images are the same.

Definition 10.3.6. For a parameterized m-manifold α : U ⊂ Rm → M ⊂ X, and a
point p = α(u) ∈ M , the tangent space TpM of M at p is the image of the derivative
Dα(u) ∈ B(Rm, X), i.e.,

TpM = R(Dα(u)) = {Dα(u)v : v ∈ Rm}.

Note. Because Dα(u) is injective, if v1, . . . , vm is a basis for Rm, then

Dα(u)v1, . . . , Dα(u)vm

is a basis for TpM .



Example (in lieu of 10.3.7). Consider again, for U = (0, 2π) × (0, π) ⊂ R2, the
parameterized 2-manifold α : U →M ⊂ R3 given by

α(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ).

The point p = (−1/
√

2, 0, 1/
√

2) ∈M is α(π, π/4). Since

Dα(π, π/4) =

 0 −1/
√

2

−1/
√

2 0

0 −1/
√

2


a basis for TpM is

Dα(π, π/4)e1 =

 0

−1/
√

2
0

 and Dα(π, π/4)e2 =

−1/
√

2
0

−1/
√

2

 .
For the reparameterization β : W →M given by

β(ξ, η) = (cos 2ξ sin η, sin 2ξ sin η,− cos η)

where W = (0, π) × (0, π), the point p = (−1/
√

2, 0, 1/
√

2) is β(π/2, 3π/4), i.e., using
the orientating reversing reparameterization φ : U → W , we have

φ(π, π/4) = (π/2, π − π/4) = (π/2, 3π/4).

Since

Dβ(π/2, 3π/4) =

 0 1/
√

2

−2/
√

2 0

0 1/
√

2


a basis for TpM is

Dβ(π/2, 3π/4)e1 =

 0

−2/
√

2
0

 and Dβ(π/2, 3π/4)e2 =

1/
√

2
0

1/
√

2

 .
One readily sees that R(Dβ(π/2, 3π/4)) and R(Dα(π, π/4)) are the same subspace.

Proposition 10.3.8. The tangent space TpM is independent of the parameterization
and of the orientation.

Proof. For open U,W ∈ Rm, suppose α : U → M and β : W → M are equivalent
parameterizations of the unoriented manifold M ⊂ X.

Then there exists a diffeomorphism φ : U → W such that β ◦ φ = α. [The book writes
φ = β−1 ◦ α which is correct because β : W → X is injective, so that the restriction
β : W → M is invertible, but then the book differentiates β−1 : M → W which can be
done, but we have only learned how to differentiate functions defined on open subsets of



Banach spaces, and unfortunately M is not in general an open subset of X. We proceed
without using the derivative of β−1.]

For p ∈ M there are unique u ∈ U and w ∈ W such that α(u) = p = β(w); in fact
w = φ(u).

Since β ◦ φ = α where β, φ, and α are C1, we have

Dα(u) = D(β ◦ φ)(u) = Dβ(φ(u))Dφ(u) = Dβ(w)Dφ(u).

To show that R(Dβ(w)) = R(Dα(u)), we take x ∈ R(Dα(u)).

By the injectiveness of Dα(u) there exists a unique v ∈ Rm such Dα(u)v = x.

Then
x = Dα(u)(v) = Dβ(w)Dφ(u)v = Dβ(w)

(
Dφ(u)v

)
,

which says that x ∈ R(Dβ(w)).

This gives R(Dα(u)) ⊂ R(Dβ(w)).

Now let x ∈ R(Dβ(w)).

By the injectiveness of Dβ(w) there exists a unique v ∈ Rn such that x = Dβ(w)v.

Since φ : U → W is a diffeomorphism, the map Dφ(u) ∈ B(Rm) is an isomorphism
because differentiating (φ−1 ◦ φ)(z) = z gives

Dφ−1(φ(z))Dφ(z) = I,

which says that Dφ(z) is invertible linear map.

Thus there exists a unique y ∈ Rm such that Dφ(u)y = v.

This implies that

x = Dβ(w)v = Dβ(w)Dφ(u)y = Dβ(φ(u))Dφ(u)y = Dα(u)y.

which says that x ∈ R(Dα(u)).

This gives the other inclusion R(Dβ(w)) ⊂ R(Dα(u)). �

Remark 10.3.9. The tangent space TpM of a manifold M at p ∈M is a vector subspace
of X. One often draws the tangent space as a hyperplane touching and tangent to the
manifold at the point p. This is technically incorrect since the hyperplane is not a vector
subspace. We get around this technicality by translation: the hyperplane that touches
and is tangent to M at P is the translation

p + TpM = {p + x : x ∈ TpM}.

Remark. In the case that M is a 2-manifold or surface in X = R3, we can use the cross
product on the inner product space R3 with the standard inner product to construct a
normal vector to M . Recall that in standard coordinates on R3, the cross product of two
vectors a = (a1, a2, a3) and b = (b1, b2, b3) is the vector

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).



The cross product a × b has the property that it is orthogonal to both a and b. The
norm of a× b depends on the norms of a and b because

‖a× b‖ = ‖a‖ ‖b‖ sin θ

where θ ∈ [0, π) is the angle between a and b. Normalizing the cross product gives a
vector of length one that no longer depends on the lengths of a and b.

Definition 10.3.10. For a surface α : U ⊂ R2 → R3, the unit normal of M at p = α(u)
is the vector

N(p) =
Dα(u)e1 ×Dα(u)e2
‖Dα(u)e1 ×Dα(u)e2‖

.

Oftentimes we will write N instead of N(p).

Proposition 10.3.11. The unit normal N of a surface M in R3 depends only on the
orientation of M . If the orientation of M is reversed, then N is negated.

Proof. For a surface M ⊂ R3 and open sets U, V in R3, let α : U → M and β : W ⊂ M
be parameterizations of M .

Then there exists a diffeomorphism φ : U → W such that β ◦φ = α with det(Dφ(u)) 6= 0
for all u ∈ U .

For p ∈ M there exist unique u ∈ U and w ∈ W such that α(u) = p = β(w), i.e.,
w = φ(u).

Since each of β, φ, and α is C1, we have by the Chain Rule that

Dα(u) = D(β ◦ φ)(u) = Dβ(φ(u))Dφ(u) = Dβ(w)Dφ(u).

This implies for i = 1, 2 that

Dα(u)ei = Dβ(w)Dφ(u)ei.

Thus we have that

Dα(u)e1 ×Dα(u)e2 = Dβ(w)Dφ(u)e1 ×Dβ(w)Dφ(u)e2.

By a property of the cross product given in Proposition C 3.2 (in the Appendix of the
book), there holds

Dβ(w)Dφ(u)e1 ×Dβ(w)Dφ(u)e2 = det
(
Dφ(u)

)(
Dβ(w)e1 ×Dβ(w)e2

)
.

This implies that

Dα(u)e1 ×Dα(u)e2
‖Dα(u)e1 ×Dα(u)e2‖

=
det
(
Dφ(u)

)(
Dβ(w)e1 ×Dβ(w)e2

)
‖det

(
Dφ(u)

)(
Dβ(w)e1 ×Dβ(w)e2

)
‖

=
det
(
Dφ(u)

)
|det

(
Dφ(u)

)
|
Dβ(w)e1 ×Dβ(w)e2
‖Dβ(w)e1 ×Dβ(w)e2‖



The unit normal vectors are the same when det
(
Dφ(u)

)
> 0, i.e., when β is an orientation

preserving reparameterization of α.

The unit normal vectors are the negatives of each other when det
(
Dφ(u)

)
< 0, i.e., when

β is an orientation reversing reparameterization of α. �

Example. Consider again the parameterizations α : U → M and β : W → M of the
surface M given by

α(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ)

for (θ, ϕ) ∈ U = (0, 2π)× (0, π) and

β(ξ, η) = (cos 2ξ sin η, sin 2ξ sin η,− cos η)

for (ξ, η) ∈ W = (0, π)× (0, π).

The point p = (−1/
√

2, 0, 1/
√

2) = α(π, π/4) = β(π/2, 3π/4), for which

Dα(π, π/4)e1 =

 0

−1/
√

2
0

 and Dα(π, π/4)e2 =

−1/
√

2
0

−1/
√

2


and

Dβ(π/2, 3π/4)e1 =

 0

−2/
√

2
0

 and Dβ(π/2, 3π/4) =

1/
√

2
0

1/
√

2

 .
Computing the unit normals at p for each parameterization we have for α that

N =
(1/2, 0,−1/2)

1/
√

2
= (1/

√
2, 0,−1/

√
2),

and for β that

N =
(−1, 0, 1)√

2
= (−1/

√
2, 0, 1/

√
2).

As predicted by Proposition 10.3.11, the unit normals are the negatives of each other
because β is an orientation reversing reparameterization of α.


