
Math 346 Lecture #23
10.5 Green’s Theorem

Green’s Theorem is an analogue of the Fundamental Theorem of Calculus and provides
an important tool not only for theoretic results but also for computations.

Green’s Theorem requires a topological notion, called simply connected, which we define
by way of an important topological theorem known as the Jordan Curve Theorem.

10.5.1 Jordan Curve Theorem

Recall from 5.9.3 the notion of connectedness for a metric space X: if there are disjoint
open subsets U and V such that X = U ∪ V , then X is called disconnected; if X is not
disconnected, then X is connected.

Definition 10.5.1. A connected component of a subset S ⊂ Fn is a subset T ⊂ S such
that T is connected and T is not contained in any other connected subset of S.

Example (in lieu of 10.5.2). The subset R2 \ {(x, y) : x2 + y2 = 1} consists of two
connected components, namely {(x, y) : x2 + y2 < 1} and {(x, y) : x2 + y2 > 1}. The
subset {(x, y) : x2 + y2 = 1} removed from R2 is a simple closed curve with smooth
parameterization α : [0, 2π]→ R2 given by α(t) = (cos t, sin t).

Theorem 10.5.3 (Jordan Curve Theorem). Let γ be a simple closed curve in R2.
The complement R2 \ γ consists of two connected components, one of which is bounded,
and the other unbounded, where γ is the topological boundary of each component.

Remark 10.5.4. This theorem and its proof are part of the branch of mathematics
known as Algebraic Topology. The proof of the Jordan Curve Theorem is quite difficult.

Definition 10.5.5. For a simple closed curve γ in R2, we call the bounded component
of R2 \ γ the interior of γ, and call the unbounded connected component of R2 \ γ the
exterior of γ.

If a point x ∈ R2 lies in the interior of γ we say that x is enclosed by γ, or that it lies
within γ.

Remark 10.5.6. The complex plane C is homeomorphic to R2, a homeomorphism from
R2 to C being given by

(x, y)→ x+ iy.

This means, because the Jordan Curve Theorem is a topological property, that we can
apply the Jordan Curve Theorem to simple closed curves in C, and speak of their interiors
and exteriors.

Definition 10.5.7. A subset U ⊂ R2 or U ⊂ C is said to be simply connected if for
any simple closed curve γ that lies in U , every point in the interior of γ belongs to U .

Nota Bene 10.5.8. Practically, a subset U of either R2 or C is simply connected if
it contains no holes. For example, the open unit disk {(x, y) : x2 + y2 < 1} is simply
connected but the punctured open disk {(x, y) : 0 < x2 +y2 < 1} is not simply connected
(see Unexample 10.5.10).

Example 10.5.9. (i) The whole plane R2 or C is simply connected.



(ii) For any x ∈ R2 and any r > 0, the open ball B(x, r) in R2 is simply connected.

Proposition 10.5.11. The interior of any simple closed curve is simply connected.

Proof. For a simple closed curve γ ⊂ R2, let U and B be the unbounded and bounded
connected components of R2 \ γ.

To show that the interior of γ is simply connected, we take a simple closed curve σ ⊂ B.

Then σ splits R2\γ into an unbounded connected component v and a bounded connected
component β.

Since U is connected with U ∩ σ = ∅, either U ⊂ v or U ⊂ β.

Since β is bounded and U is unbounded, we cannot have U ⊂ β.

This implies that U ⊂ v, whence β ⊂ vc ⊂ U c = B ∪ γ.

Since γ ∩B = ∅, we obtain β ⊂ B.

This shows that the interior of γ is simply connected. �

We now give names to the two orientations that a simple closed curve in R2 can have.

Definition 10.5.12. Let γ : [a, b]→ R2 be a simple closed curve with interior Θ ⊂ R2.
For γ(t) = (x(t), y(t)), we define the left-pointing normal vector n(t) at t ∈ [a, b] to be

n(t) = (−y′(t), x′(t)).

We say that γ is positively oriented if for all t ∈ [a, b] there is δ > 0 such that for all
0 < h < δ there holds

γ(t) + hn(t) ∈ Θ.

Remark 10.5.13. In other words, a simple closed curve is positively oriented when
Θ always lies to the left of the tangent vector γ′(t). This is the same as saying the
simple closed curve is traversed in the counterclockwise direction. This notion of positive
orientation extends to piecewise smooth simple closed curves. If instead Θ always lies
to the right of the tangent vector, then γ has negative orientation, which is to say that
traversing the simple closed curve is done in clockwise direction.

10.5.2 Green’s Theorem

Green’s Theorem holds for bounded simply connected subsets of R2 whose boundaries
are simple closed curves or piecewise simple closed curves. To prove Green’s Theorem
in this general setting is quite difficult. Instead we restrict attention to “nicer” bounded
simply connected subsets of R2.

Definition 10.5.14. A closed subset ∆ ⊂ R2 is called an x-simple region if there is a
compact interval [a, b] ⊂ R and continuous functions f, g : [a, b] → R such that f and g
are C1 on (a, b), and

∆ = {(x, y) ∈ R2 : a ≤ x ≤ b, f(x) ≤ y ≤ g(x)}.

A closed subset ∆ ⊂ R2 is called a y-simple region if there is a compact interval [a, b] ⊂ R
and continuous function f, g : [c, d]→ R such that f and g are C1 on (a, b), and

∆ = {(x, y) : c ≤ y ≤ d, f(y) ≤ x ≤ g(y)}.



We say a closed subset ∆ of R2 is a simple region if ∆ is both an x-simple region and a
y-simple region.

Example. (i) Each compact rectangle [a, b]× [c, d] in R2 is a simple region.

(ii) Any closed disk B(x, r) is a simple region.

(iii) The intersection of B(0, r) with the first quadrant {(x, y) : x ≥ 0, y ≥ 0} is a simple
region.

Theorem 10.5.15 (Green’s Theorem). Let γ : [a, b] → R2 be a piecewise-smooth,
positively oriented, simple closed curve with interior Ω ⊂ R2 such that Ω = Ω ∪ γ is the
union of a finite number of simple regions ∆1, . . . ,∆m for which the pairwise intersections
∆i ∩∆j, i 6= j, all have measure zero. For an open U containing Ω, if P,Q : U → R are
C1, then ∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
=

∫
γ

(P,Q) · dγ =

∫
γ

Pdx+Qdy.

Proof. It suffices to prove the theorem when Ω is a simple region.

Then Ω is an x-simple region and we show that∫
Ω

∂Q

∂x
=

∫
γ

Q dy.

With Ω also being a y-simple region, the proof of

−
∫

Ω

∂P

∂y
=

∫
γ

P dx

is similar.

With Ω being x-simple, there is a compact [a, b] ⊂ R and continuous functions f, g :
[a, b]→ R such that f and g are C1 on (a, b), and

Ω = {(x, y) : a ≤ x ≤ b, f(x) ≤ y ≤ g(x)}.

The boundary γ of Ω is the concatenation of four smooth curves γi, i = 1, 2, 3, 4, oriented
in the positive orientation.

Here γ1 : [a, b]→ R2 is the bottom of the region and is given by

γ1(t) = (t, f(t));

here we have ∫
γ1

Q dy =

∫ b

a

Q(t, f(t))f ′(t) dt.

The curve γ2 : [0, 1]→ R2 is the right side of Ω and is given by

γ2(t) = (b, (1− t)f(b) + tg(b));



here we have ∫
γ2

Q dy =

∫ 1

0

Q
(
b, (1− t)f(b) + tg(b)

)
(g(b)− f(b)) dt

=

∫ g(b)

f(b)

Q(b, z) dz,

where we use the change of variable z = (1− t)f(b) + tg(b).

The curve γ3 : [a, b]→ R2 is the top of Ω and is given by

γ3(t) = (b+ a− t, g(b+ a− t));

here we have∫
γ3

Q dy = −
∫ b

a

Q
(
b+ a− t, g(b+ a− t)

)
g′(b+ a− t) dt

= (−1)2

∫ a

b

Q(z, g(z))g′(z) dz = −
∫ b

a

Q(z, g(z))g′(z) dz,

where we use the change of variable z = b+ a− t.
The curve γ4 : [0, 1]→ R2 is the left of Ω and is given by

γ4(t) = (a, (1− t)g(a) + tf(a));

here we have ∫
γ4

Q dy =

∫ 1

0

Q
(
a, (1− t)g(a) + tf(a)

)
(f(a)− g(a)) dt

=

∫ f(a)

g(a)

Q(a, z) dz = −
∫ g(a)

f(a)

Q(a, z) dz,

where we use the change of variable z = (1− t)g(a) + tf(a).

The four integral we have computed combine to give∫
γ

Q dy =
4∑
i=1

∫
γi

Q dy.

On the other hand, by Fubini’s Theorem, the corollary of Leibniz’s Rule, and the Fun-
damental Theorem of Calculus, we have∫

Ω

∂Q

∂x
=

∫ b

a

(∫ g(x)

f(x)

∂Q

∂x
dy

)
dx

=

∫ b

a

[
d

dx

(∫ g(x)

f(x)

Q(x, y) dy

)
+ f ′(x)Q(x, f(x))− g′(x)Q(x, g(x))

]
dx

=

∫ g(b)

f(b)

Q(b, y) dy −
∫ g(a)

f(a)

Q(a, y) dy +

∫ b

a

f ′(x)Q(x, f(x)) dx

−
∫ b

a

g′(x)Q(x, g(x)) dx.



Comparing this with the direct computation of the line integral of Q on γ we have
agreement. �

Example (in lieu of 10.5.16). Can you evaluate the line integral∫
γ

(y + xex cosx)dx+ (x+ ln(1 + y2 + ey) sin y)dy

where γ is unit circle?

The functions

P (x, y) = y + xex cosx and Q(x, y) = x+ ln(1 + y2 + ey) sin y

both belong to C∞(R2,R).

Thus P and Q are C1 on an open set U containing γ and its interior Ω.

By Green’s Theorem we have∫
γ

Pdx+Qdy =

∫∫
Ω

(Qx − Py) =

∫∫
Ω

(1− 1) = 0.

Remark 10.5.17. The conclusion of Green’s Theorem extends to general regions of the
plane such as the not simply connected annulus

Ω = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4}

with the positive orientation, namely, counterclockwise on the outer boundary while
clockwise on the inner boundary.

The extension of Green’s Theorem to Ω is achieved by cutting the annulus with a line
passing through the origin, say the x-axis, into two simply connected pieces

Ω1 = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4, y ≥ 0}

and
Ω2 = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4, y ≤ 0}.

In keeping the positive orientation, the straight-line boundary components of Ω1 are tra-
versed from left to right, while the straight-line boundary components of Ω2 are traversed
from right to left.

This means that the contribution to a line integral over the straight-line boundary com-
ponents of Ω1 and Ω2 cancel, and never need to be computed.

On the other hand, we can apply Green’s Theorem to Ω1 and Ω2 because the intersection
Ω1 ∩ Ω2 has measure zero; if γi is the piecewise smooth boundary curve of Ωi, i = 1, 2,
then ∫∫

Ω

Qx − Py =
2∑
i=1

∫∫
Ωi

Qx − Py =
2∑
i=1

∫
γi

Pdx+Qdy.


