
Math 346 Lecture #24
11.1 Holomorphic Functions

11.1.1 Differentiation on C
The complex plane C = {x+iy : x, y ∈ R}, as a normed vector space over R, is isomorphic
to R2 through the map

(x, y)→ x+ iy,

where the norm on C is |x+ iy| =
√
x2 + y2, the 2-norm on R2.

This means that C and R2 have the same topology, so an open set in C will be the same
as an open set in R2.

The complex plane C is two-dimensional vector space over R, or a real two-dimensional
vector space, because {1, i} is a basis for C over R.

The complex plane is also a one-dimensional normed vector space over C, i.e., the complex
number 1 is a basis for C over C.

Because we can think of C in two different ways as a normed vector space there are two
different notions of derivative.

Let U be an open subset of C, and consider a function f : U → X where X will be either
the real vector space R2 or the complex vector space C, and let x0 = (x0, y0) ∈ U or
z0 = x0 + iy0 ∈ U .

When we think of C as a two-dimensional vector space R2 over R, the real derivative of
f : U → R2 at a point x0 = (x0, y0) ∈ U , if it exists, is the unique L ∈ B(R2) such that

lim
h→0

‖f(x + h)− f(x)− Lh‖2
‖h‖2

= 0,

i.e., a bounded linear real operator L = Df(x) on R2 represented in the standard basis
by a 2× 2 real matrix

[
∂f/∂x ∂f/∂y

]
.

The real derivative of f at x0 requires four real numbers in the 2× 2 matrix to describe
it.

When we think of C as a complex vector, the complex derivative of f : U → C at a point
z0 ∈ U , if it exists, is the unique A ∈ B(C) such that

lim
ξ→0

‖f(z0 + ξ)− f(z0)− Aξ‖2
‖ξ‖2

= 0,

i.e., a bounded linear complex operator A = Df(z0) on C represented in the standard
basis by a 1× 1 complex matrix whose entry is

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
∈ C.

The complex derivative of f at z0 requires one complex number or equivalently two real
numbers to describe it.

The real and complex derivatives of f are different because the real derivatives requires
four real numbers while the complex derivative requires two real numbers.



We can extend the notions of real derivative and complex derivative to functions f : U →
X for a complex Banach space X with norm ‖ · ‖X because a complex Banach space is
a real Banach space.

We say that f : U → X is real differentiable at x0 ∈ U if there exists L ∈ B(R2, X) such
that

lim
h→0

‖f(x + h)− f(x)− Lh‖X
‖h‖2

= 0.

Definition. For U open in C and (X, ‖ · ‖X) a complex Banach space, a function
f : U → X is the complex differentiable at z0 ∈ U if there is A ∈ B(C, X) such that

lim
ξ→0

‖f(z0 + ξ)− f(z0)− Aξ‖X
‖ξ‖2

= 0.

Since B(C, X) ∼= X via the complex linear map φ→ φ(1), we may identify the complex
derivative A = Df(z0) of f at z0 by

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
∈ X,

which is to say that Df(z0) as complex linear transformation acts as

Df(z0)w = wf ′(z0),

the complex scalar multiple of f ′(z0) ∈ X by w ∈ C.

Definition 11.1.1. For U open in C and X a complex Banach space, a function
f : U → X is holomorphic on U if f is complex differentiable at each z0 ∈ U .

By saying f is holomorphic without specifying the domain U , the standing assumption
is that f is holomorphic on C, i.e., U = C.

A function holomorphic on C is called entire.

11.1.2 The Cauchy-Riemann Equations

As we will see, complex differentiable implies real differentiable, but the converse is false.
Part of the reason for this is that the complex linear transformation f ′(z0) is given by
complex scalar multiplication w → wf ′(z0) whereas most real linear transformations from
R2 to X are not given by complex scalar multiplication.

Specifically, a complex linear transformation from C to X is determined by a choice of
b ∈ X for f ′(z0), i.e., for w = x+ iy we have

w → wb = wf ′(z0) = (x+ iy)b = xb + iyb ∈ X,

whereas for a real linear transformation from R2 to X is determined by a choice of two
elements b1, b2 ∈ X for

[
∂f/∂x ∂f/∂y

]
, i.e., for (x, y) ∈ R2 and

[
∂f/∂x ∂f/∂y

]
=[

b1 b2

]
we have

(x, y)→
[
∂f/∂x ∂f/∂y

] [x
y

]
= xb1 + yb2 ∈ X.



This real linear transformation defines a complex linear transformation if and only if

b2 = ib1,

which in terms of the partial real derivatives of f , is that

∂f

∂y
= i

∂f

∂x
.

This equation is known as the Cauchy-Riemann equation.

In the special case of X = C, we can write

f(x, y) = u(x, y) + iv(x, y),

so that
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
and

∂f

∂y
=
∂u

∂y
+ i

∂v

∂y
,

whence the Cauchy-Riemann equation becomes the pair of equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Theorem 11.1.4 (Cauchy-Riemann). For open U ⊂ C and a complex Banach space
X, let f : U → X.

(i) If f is holomorphic on U , then it is real differentiable on U , the partials ∂f/∂x and
∂f/∂y exist on U , and the Cauchy-Riemann equation ∂f/∂y = i∂f/∂x holds on
U .

(ii) If the partial derivatives ∂f/∂x and ∂f/∂y exist on U , are continuous on U , and
satisfy the Cauchy-Riemann equation ∂f/∂y = i∂f/∂x on U , then f is holomorphic
on U . [The book has an extra hypothesis, f is real differentiable on U , but this is
implied by the continuous existence of the partial derivatives.]

See the book for the proof.

Note. Corollary 11.1.5 is a bit redundant – it is part (ii) of Theorem 11.1.4 with X = C.
A better corollary of 11.1.4 is: if f : U → C given by f(z) = u(x, y) + iv(x, y) has
u, v : U → R being C1 and satisfying the Cauchy-Riemann equations,

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
,

then f is holomorphic on U .

Example. Prove that f(z) = z2 is entire.

The book showed this in Example 11.1.2 by direct computation of the complex derivative.

We will use Theorem 11.1.4 part (ii). To this end we have

z2 = (x+ iy)2 = x2 − y2 + i(2xy)



so that
u(x, y) = x2 − y2 and v(x, y) = 2xy.

The functions u, v : R2 → R are C1 functions for which

∂u

∂x
= 2x =

∂v

∂y

and
∂u

∂y
= −2y = −∂v

∂x
.

By Theorem 11.1.4 part (ii), the function f(z) = z2 is holomorphic on C, i.e., it is entire.

Example 11.1.6. Not every function formed in complex variable notation, such as

f(z) =
z

|z|2

is holomorphic on some open subset U of C \ {0}.
Here we have

f(z) =
x+ iy

x2 + y2
=

x

x2 + y2
+ i

y

x2 + y2

so that
u(x, y) =

x

x2 + y2
and v(x, y) =

y

x2 + y2
.

Then
∂u

∂x
=

y2 − x2

(x2 + y2)2
and

∂v

∂y
=

x2 − y2

(x2 + y2)2

do not agree on an open set U in C \ {0}.
Nor do

∂u

∂y
= − 2xy

(x2 + y2)2
and − ∂v

∂x
=

2xy

(x2 + y2)2

agree on an open set U in C \ {0}.
By the contrapositive of Theorem 11.1.4 part (i), the function f is not holomorphic on
any open subset U of C \ {0}.
Note. The complex plane has the conjugate operation, namely x+ iy = x − iy. For
a function f : U → C with U open in C, there is the function f̄ : U → C given by
conjugating the output of f , i.e., if f(x+ iy) = u(x, y) + iv(x, y), then

f̄(x+ iy) = u(x, y)− iv(x, y).

With this we can form the function

|f |2 = ff̄ = (u+ iv)(u− iv) = u2 + v2 ≥ 0,

and hence the real-valued function

|f | =
√
u2 + v2.



Proposition 11.1.7. Suppose for an open, path-connected U ⊂ C, that f : U → C is
holomorphic on U . If f̄ is holomorphic on U or |f | is constant on U , then f is constant
on U .

The proof of this HW (Exercise 11.5).


