Math 346 Lecture #25
11.2 Properties and Examples

Holomorphic functions satisfy all of the usual rules of differentiation, whether they are
complex valued or more general complex Banach space X-valued. We will consider the
case of X = M,,(C) in Chapter 12.

Holomorphic functions also have a very close connection to convergent power series. The
first part of this connection — that every convergent power series is holomorphic — we will
see in this section.

Throughout this section (X, || - ||x) is a complex Banach space.

11.2.1 Basic Properties

Remark 11.2.1. For an open subset U of C, a function f : U — X is continuous
on U when f is holomorphic on U, because complex differentiability at a point implies
continuity at that point (see Corollary 6.3.8).

Theorem 11.2.2. For U open in C, suppose f, g : U — C are holomorphic.

(i) For any constants a,b € C, the function af + bg is holomorphic on U.
(ii) The product fg is holomorphic on U and

(f9) = fg+fg.

(iii) If g(z) # 0 on U, then f/g is holomorphic on U and

(i)' _f9-1d
g 9

(iv) For k € N and ag, ay,...,ar € C, the polynomial z — ag+ a2z +- - - +ap2* is entire

and its derivative is

2 — ay + 2a02 + - - - + kaga® L

(v) For m,n € N, ag,ay,...,a, € C, and by, by, ..., b, € C, the rational function

ap +arz+ -+ a,z"
bo + b1z + -+ + bpp2™

is holomorphic on the open set C\ {complex roots of the denominator}.

Theorem 11.2.3 (Chain Rule). For open sets U,V in C,if f : U — Candg: V — C
are holomorphic, and f(U) C V, then fog:U — C is holomorphic and

(fog)(2) = f(9(2)d(2) for all z € U.

The proof of this follows from Theorem 6.4.7.

Proposition 11.2.4. For an open and path-connected U in C, if f : U — X is
holomorphic and f’(z) = 0 for all z € U, then f is constant on U, i.e., there exists x € X
such that f(z) =x for all z € U.



Proof. For any zi, 25 € U there is a smooth path ¢ : [0,1] — U such that ¢g(0) = z; and
g(1) = 2.

The composition f o g is C' on (0,1) and its derivative (f o g)" is continous on [0, 1];
these follows because f and g are both differentiable, and the hypothesis f'(z) = 0 for
all z € U implies that the derivative (f o g)'(t) = f'(g(t))g'(t) is the zero function which
1s continuous.

By the Fundamental Theorem of Calculus we have
flea) = flen) = Sla) ~ ftot0) = [ (fo9y= [ 0=0
0,1 0,1

Since 21,29 are arbitrary points of the path connected open U, we obtain that f is
constant on U. 0

11.2.2 Convergent Power Series are Holomorphic

We review some of the basic theory of convergent power series, some of which you saw
in Math 341, and then prove that a convergent power series in a complex variable is
holomorphic.

We look at more general power series as follows. For a, € X, k=10,1,2,..., and z, € C,
a power series in X is

F(2) =) ar(z — )"

For each r > 0 and each n =0, 1,2, ..., the partial sum

n

fa(2) =) an(z = 2)*

k=0

is a function belonging to the Banach space
(LOO(B(207 T)v X>7 || ’ ||<>o)

where

gl = sup |lg(2)l|x-
2€B(z0,r)

Convergence of the sequence of partial sums is always with respect to this Banach space,
i.e., the topology of uniform convergence on compact sets.

A power series converges on an open set U if it converges on every compact subset of U.

Lemma 11.2.5 (Abel-Weierstrass Lemma). For a sequence ag, ay, as, - -- € X, if
there exist an R > 0 and M > 0 such that for all n =0, 1,2,... there holds

anllxR* < M,
then for any 0 < r < R, the two series

Z ar(z — 2)* and Z kay(z — 20)" !

k=0 k=0

oo



(the second being the formal term-by-term derivative of the first) both converge uniformly
and absolutely on B(zg,7) C C.

See the book for the proof.

Corollary 11.2.6. If a series Y - ax(z — 20)* diverges when z = z;, then the series
diverges at every z € C that satisfies |z — 29| > |21 — 20|

Proof. This is the contrapositive of the Abel-Weierstrass Lemma. 0

Definition 11.2.7. Suppose a power series Y, ax(z — 29)" converges on Bz, ) for
some r > (0. The radius of convergence of the series is the supremum of the values
of R > 0 for which the series converges uniformly on all compact subsets of the open
B(Z(), R) .

The supremum is oo if the series converges uniformly on all compact subsets of B(zg, R)
for all R > 0, and we say the radius of convergence is co.

Theorem 11.2.8. If a power series f(z) = Y ;o ar(z — 20)* converges uniformly on
compact subsets of B(zg, R), then

(i) the function f is holomorphic on B(zy, R), and
(ii) the series g(z) = > p, ka(z — 20)*~! converges uniformly on compact subsets of
B(zp, R) and f'(z) = g(z) on B(zy, R).
See the book for the proof.

Definition 11.2.9. For an open U C C, a function f : U — X is called complex analytic
(or simply analytic when there is no confusion with real analytic) if for all zy € U there
exists r > 0 with B(zo,7) C U such that f can be written as a convergent power series
on B(zg, ).

Remark 11.2.10. Any analytic function f : U — X is holomorphic on U by Theorem
11.2.8 part (i), and its derivative f' : U — X is analytic by Theorem 11.2.8 part (ii),
and hence f’ is holomorphic by Theorem 11.2.8 part (i). By in induction this means that
every derivative f() is holomorphic, so that an analytic function is C'*°.

Example 11.2.11. (i) The power series

exp(s) = 30 2
k=0
converges absolutely for any z € C because the series
|21
>
k=0

converges to el?l < oo for any z € C.

Thus the complex exponential function exp(z) = e* is entire, and its derivative f’(z) is
itself.



(ii) The complex sine function is defined by the power series

o (_1)nz2n+1

sin(z) = Z s

k=0
which converges everywhere because
o
‘2’271—&—1
Z (2n+1)!
k=0 T

converges to sin |z| < oco.
The complex sine function sin(z) is entire and its derivative is the next function.

(iii) Similarly, the complex cosine function

o0

COS E

k=0

n2n

is entire as well and its derivative is —sin(z).

Proposition 11.2.12 (Euler’s Formula). For every ¢ € C there holds
exp(it) = cos(t) + isin(t).

See the book for the proof.

Example 11.2.13. We already learned by Theorem 11.2.8 part (i) that the complex

exponential function is entire.
This means that the Cauchy-Riemnan equations should hold for the exp(z).
From Euler’s Formula we have
exp(z) = "t = €% = e*(cosy + isiny) = e* cosy + ie”siny.
The functions u(x,y) = e* cosy and v(x,y) = e* sin y satisfy
ou ov ou . ov
—x:e Cosy—a—yanda—y:—e smy:—%,

which are the Cauchy-Riemann equations.

Example 11.2.14. We can use the exponential map to define a function f from C to
M, (C) = B(C") by
B i (Az)*

k=0
This series converges everywhere because

— [lA[[*|=]*
> = (Al ]z]) <o
k=0 ’

The function f is holomorphic with derivative

o0

O Ak k-1 (AZ k: 1
= Zk: T Z AZ k' = Aexp(Az).
k=1 k=1

=0




