Math 346 Lecture #36
12.6 Spectral Decomposition II

We are now in the position of proving the existence of the spectral decomposition

A= )" (AP\+Dy)
A€o (A)

for every linear operator A € M, (C). This spectral decomposition includes the one
for semisimple linear operators. We have already seen two examples of the spectral
decomposition for non-semisimple linear operators. We will also prove that the range
of each spectral projection P, is precisely the generalized eigenspace, and formalize the
simplified partial fraction form of the resolvent we have seen many times. We begin with
understanding the linear operator D, that appears in the spectral decomposition.

Lemma 12.6.1. For A € M,(C) and X\ € o(A), the linear operator D) (the matrix
coefficient A_5 in the Laurent series of R4(z) about \) satisfies

Dy = (A= AI)P.

Moreover, the spectral radius of D, is zero.
Proof. The equation D, = (A — AI)P, holds if and only if

AP\ = AP\ + D,

holds, so it suffices to verify that latter equation.

Let I'y be a positively oriented circle centered at A with small enough radius to exclude
other elements of o(A).

By definition of the resolvent, we have R(z)(z] — A) = I, from which we get
2RA(z) = AR(2)+ 1

where we have used AR4(z) = Ra(z)A from Lemma 12.3.5.

Since . )
Py=— (@ Ra(z) dzand — @ I(z) dz =0,
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where I(z) = z is entire, we have that
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APy = — O AR4(z) dz
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By writing z = (z — A) + A we obtain

1 1
APy = — O ARa(2) dz+ — @ (z — A)Ra(2) dz
211 Ty ™ Ty
A 1 RA<Z)
= — dz4+ — P ——5—=d
om P ) det 50 @ e &
=M+ A,
= AP\ + D,.

To show that r(D,) = 0, we parameterize I'y by z(t) = X + pe' for 0 < p < 1 with p
small enough so that I'y encloses A but no other element of o(A).

By Lemma 12.5.5 part (i) we have that A_ 1) = D} for all n > 1.

Now . Ra(2)
A L NGO R
(D) ™ o Yé N
Thus for any matrix norm || - || on M, (C) we have

1081 = |k f (= Ra(e)

1 e . ,
— / PR e RAN + pe')pie’ dtH
27 ||.Jo

< o sup{||R(2)|| - 2 € Ta}.

Since Iy is compact and R4(z) is continuous on I'y, the quantity
M =sup{||R(z)|| : z € '\}

is finite.
Thus we obtain
r(Dy) = lim |D¥|V* < lim p VR MYE = p.
k—ro0 k—ro0
Since p > 0 can be arbitrarily small we arrive at r(D,) = 0. 0
Example (in lieu of 12.6.2). We verify Dy = (A — X )P, for
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For the verification we have
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Remark. Recall that a matrix B € M,,(C) is called nilpotent if there is | € N such that
B'=0.

Lemma 12.6.3. A matrix B € M,,(C) satisfies r(B) = 0 if and only if B is nilpotent.
Proof. Suppose that r(B) = 0.

Then o(B) = {0}, i.e., every eigenvalue of B is zero.

Hence the characteristic polynomial of B is p(z) = 2".

By the Cayley-Hamilton Theorem, we have have B" = p(B) = 0, which says that B is
nilpotent.

Now suppose that B is nilpotent.

Then there exists [ € N such that B! = 0.

This implies that B* = 0 for all & > 1.

Hence for any matrix norm || - || we have ||B¥|| = 0 for all k > L.

This implies that r(B) = limg_., || B¥||*/* = 0. 0.
Remark. Lemmas 12.6.1 and 12.6.3 show that the linear operator Dy is nilpotent.

Definition. For A € M,(C) and A € o(A), the nilpotent linear operator Dy is called
the eigennilpotent of A associated with the eigenvalue .

Remark 12.6.4. Recall that the order of a nilpotent B € M,,(C) is the smallest [ € N
such that B! = 0. Since B! = B! = 0, then A4 (B') = 4 (B"*!), and so ind(B) = I,
i.e., the order of B is the same as the index of B. From Exercise 12.6 we have that the
index of B is no bigger than n, meaning that [ < n.

Proposition 12.6.5. For A € M,,(C) and X\ € o(A), the order m,, of the eigennilpotent
D, of A satisfies

Proof. It suffices to show that Z(P,) is Dy-invariant and that Z(D,) C Z(Py).
By Lemma 12.5.5 part (iii) we have that Dy = P\D, = D, P.

To show that Z(P,) is Dy-invariant, let y € Z(Py).

Then there exists x € C™ such that y = Pyx.

Hence D)y = D\P\xx = P\(D,x) € Z(P)), implying Z(P,) is Dy-invariant.



To show that Z(D,) C Z(Py), let y € Z(D,).

Then there is x € C™ such that y = D,x.

Hence y = Dyx = Py\(D)x) € Z(P), implying that Z(D,) C Z(P»).

That my < dim(Z(P,)) follows from Exercise 12.6. O

Remark 12.6.6. Proposition 12.6.5 implies that the resolvent R4(z) has no essential
singularities, so that it is meromorphic on p(A). More precisely, part (iv) of Lemma
12.5.5 simplifies to

P)\ my—1 0o k -
RA(Z):z_)\+Z< k+1+z Syt
k=1 k=0

and part (v) of Lemma 12.5.5 simplifies to

Py Dk
Z—)\+ Z (z — Akt

k=1

P)\RA(Z) =

Remark. We now turn attention to showing that Z(Py) is the generalized eigenspace
&\, and developing some results to be used in the next section to establish uniqueness
of the spectral decomposition. We notice that if y € Z(P,), then (A — A)y € Z(P»)
because for y = Pyx we have

(M — A)y = (M — A)P\x = D)x,
and in the proof of Proposition 12.6.5 we showed that Z(D,) C Z(P)), whence that

(A — A)y € Z(Py). The converse is also true as we show next.

Lemma 12.6.7. For A € M,(C), let A € o(A) and y € C". If (\[ — A)y € Z(Py), then
y S %(P)\)

Proof. Suppose (A — A)y € Z(P)).

There is nothing to show if y = 0, so assume that y # 0, and set v = (A — A)y.
Then v € Z(P)) so that P\(v) = v by Lemma 12.1.3.

Independence of the projections means that P,v =0 for all u € o(A4) \ {\}.

As shown in the proof of Lemma 12.6.1 we have P,A = uP, + D, for all u € o(A).
Thus for p € o(A) \ {\} we have

0=Pyv=P,N—-Ay=AP,y—uP,y—D,y=(\—pn)P,y—D,y.
This implies, since D, P, = D,, from Lemma 12.5.5 part (iii), that
Dyu(Puy) = Dyuy = (A = ) (Puy).

If P,y # 0, then D} (P,y) = (A — p)*(P,y) for all k € N, which would imply that D,, is
not nilpotent since p # .



But D, is nilpotent, so it must be that P,y = 0 for all € o(A) \ {\}.

From the completeness of the projections peo(A) P, = I, we obtain

y= Y Puy=Py.
neo(A)
By Lemma 12.1.3 we have that y € Z(P)). 0.

Remark 12.6.8. The proof of Lemma 12.6.7 only depended on projections P, and
nilpotents D,, satisfying the properties (1) > P, = I, (2) P,Py = 0 for p # 1/, (3)
D,P,=D,, and (4) AP, = pP,+ Dy for all u € o(A).

Theorem 12.6.9. For A € M,(C) and X\ € o(A), the generalized eigenspace &) is
precisely Z(Py).

Proof. First we show that & C Z(P)).
Recall that &, = A (M — A)") for ky = ind(\ — A).
Let y € A ((A\ — A)"). Then

(M — A) (M — AP ly) = (A — APy =0 € Z(Py).

By Lemma 12.6.7 we have that (A — A)* "1y € Z(Py).

Then
(A — A) (M — A 2y) = (A — APty € 2(P)),

so by Lemma 12.6.7 we have that (A — A)" =%y € Z(P,).

We continue repeating this argument until we obtain (Al — A)y € Z(Py), which implies
by Lemma 12.6.7 that y € Z(P)).

This shows that & C Z(Py).

To get &\ = Z(P,) for all A € o(A), we compare two direct sum decompositions of C"
both indexed over the spectrum of A.

The first direct sum decomposition is the one from Theorem 12.2.14, namely that

A€o

C" = é).
(4)

The second direct sum decomposition is one from follows from the completeness of the
spectral projections,

For any x € C" we have



To show this sum is direct we need that

ap)n| Y aw) | =1

nea(A)\{A}

as required by Definition 1.3.6.

To this end we suppose

y € Z(P\) N > AP

pea(AN{A}
Then y € Z(P,) and there exist w,,, i € o(A) \ {A}, such that
y = Z P,w,.
nea(A)\{A}

Since y € Z(P)), we have that y = P\y by Lemma 12.1.3.
Since P\P, =0 for all ;1 € 0(A) \ {\} by Theorem 12.4.2, we have that

y g P)\y = Z P/\P‘u(w#) — 0
neo(AN{A}

This gives the direct sum decomposition

Cr= Y Z(P).

A€o (A)

The inclusion &, C Z(P,) for all A € o(A) forces the direct summands of the two direct
sum decompositions of C"* to be the same, namely & = Z(P,) for all A € o(A).

Remark 12.6.10. The proof of Theorem 12.6.9 only depends on projections with the
properties listed in Remark 12.6.8. This is important in the next section when we prove

the uniqueness of the spectral decomposition.

Theorem 12.6.12 (Spectral Decomposition Theorem). For A € M, (C), and
A € o(A), let Py be the spectral projection of A associated to A, and let Dy be the
eigennilpotent of A associated to A with its order my. The resolvent of A takes the form

PN D}
Ra(z) = Z z—)\+z(z—k)k+1 ’
A€o (A) k=1

and there holds the spectral decomposition

A= )" (AP\+D)).
A€o (A)



Proof. From Lemma 12.5.5 part (v) and the nilpotency of D) we have

PR Dk
Ra(2) Py = 7 Z [EESy=E
k=1

Combining this with the completeness of the spectral projections gives

)\GO(A
= 2 Ra@)F
A€o (A)
B z—A (z — A)ktl
Aeo(A) k=1

This is the stated form of the resolvent R (z).
We saw in the proof of Lemma 12.6.1 that APA = APy + D,.
Combining this with the completeness of the spectral projections gives

A=AI=A > P = Z AP = Y (AP, +D)).

A€o (A) A€o (A A€o (A)

This is the stated spectral projection of A. [l

Remark. The form of the resolvent stated in the Spectral Decomposition Theorem is the
precisely form we have already been getting by using the partial fraction decompositions
for the rational function entries of the resolvent.

Example (in lieu of 12.6.13). Find the spectral decomposition for the linear operator

-1 11 -3
A=1-2 8 -1
-1 5 0

The characteristic polynomial of A is
det(z] — A) = 23 — 722 + 162 — 12 = (2 — 2)*(z — 3).
The adjugate of zI — A is

22—8z45 11z—15 —32+13
adj(zI —A)=| —2z2+1 22+2-3 —z+5
—2—2 52 —6 22—T7z+ 14

Performing nine partial fraction decompositions (one for each entry of the resolvent) gives

R U L7 T . [-10 18 4
Ral)=— |5 =8 —2|+—— |3 =3 =3|+—|-5 9 2
2 5 9 1| =270y 4 4] 2 5 9 9



This form of the resolvent is the one stated in the Spectral Decomposition Theorem.

From this form of the resolvent we have

11 —18 —4 7T -7 -7 —10 18 4
P=|5 -8 —2|,D,=1{3 =3 =3|,Ps=|-5 9 2
5 —9 —1 4 -4 —4 -5 9 2

The spectral decomposition is
A=2P,+ Dy + 3Ps.

One purpose for having the spectral decomposition of A is in finding quicker means of
computing powers of A in terms of spectral decompositions, such as

A? = (2P + Dy + 3P3) (2P, + Do + 3P)
= 4P} + 2P, Dy + 6Py Py + 2Dy Py + D3 + 3Dy Py + 6 P3Py + 3P3 Dy + 9P
=4P, + 4Dy + 9P5.
Not only can we take powers of A we can also take holomorphic images of A, and get
expressions that look an awful lot like spectral decompositions!

Corollary 12.6.14. For A € M,(C), let f be holomorphic complex valued function
defined on a simply connected open set containing o(A). If for A € o(A), the complex
constants a, \ are the coefficients in the power series expansion of f about A, i.e.,

A) + Zanv,\(z - A
n=1

then ,
FLA) = D [fN)P+ D araDy
Aea(A) k=1

In the case that A is semisimple the expression simplifies to
> R
A€o (A)

Proof. For each A € o(A) let 'y be a small circle lying in the simply open set on which
f is holomorphic, and also enclosing A but no other element of o(A).

Set agx = f(A).

By the Spectral Resolution Theorem, interchanging of integration and uniform conver-
gence of series, we have
= Z Ra(z) dz

= — Z é Zak)\(z — )\)kRA(Z) dz

A k=0

= Z Za“% 2= NFRA(2) dz.

o(A) k=0



By the Spectral Decomposition Theorem we have that

Ra(2)= )

A€o (A)

my—1
Py

N G
z—A (z — AL

Thus
P/\ lf k’ - O,

yg(z—/\)kRA(z)dz: DY if k=1,...,my—1,
o 0 if k>my

All of the terms with k > m, in the power series vanish, leaving the finite sum

mA—l
FA) = > [fNP+ D araD}
A€o (A) k=1
This gives the result. O

Example (in lieu of 12.6.15). In the previous example, we used the spectral decom-
position
A=2P,+ Dy + 3P;

to compute
A* = 4P, + 4Dy + 9P;.

We will use Corollary 12.6.14 to compute this by finding the coefficients of the power
series expansion of the square function expanded about A = 2:

f(2)=22=(2-2+22=((2—-2)+22=4+4(z—-2)+ (z — 2)%
The Taylor series coefficients of f(z) about A = 2 are
Qg2 = 4, Q192 = 4, A29 = 1, A2 = 0 for all k 2 3.

Since D3 = 0 we do not need the Taylor coefficients of f(z) = z? expanded about A = 3.
By Corollary 12.6.14, using a; 2 = 4, we have

m)\—l
A =f(A)= Y [fNP+ D apaDf| =2°P,+4D, + 3°Py.
Aea(A) k=1

This agrees with what we computed earlier.



