Math 541 Lecture #1 I.1: Topological Spaces I.4: Bases, axioms of countability, and product topologies, Part I

1: Topological Spaces. We review the basic definitions and concepts of topological spaces that we will need later for infinite sets of functions.

As a visual keep in mind the familiar topological notion of open set in \mathbb{R}^N .

A collection of subsets \mathcal{U} of a set X defines a **topology** on X if the following three axioms hold:

- (i) the empty set \emptyset and X belong to \mathcal{U} ,
- (ii) the union of any collection of sets in \mathcal{U} belongs to \mathcal{U} , and
- (iii) the intersection of finitely many elements of \mathcal{U} belongs to \mathcal{U} .

The weakest or coarsest or trivial topology on X is $\mathcal{U} = \{\emptyset, X\}$, while the strongest or finest or discrete topology on X is $\mathcal{U} = \mathcal{P}(X) = 2^X$ (the power set of X).

A topological space is a pair $\{X; \mathcal{U}\}$ where \mathcal{U} is a topology on X.

A set \mathcal{O} of a topological space $\{X; \mathcal{U}\}$ is **open** if $\mathcal{O} \in \mathcal{U}$.

Any union of open sets is open by axiom (ii).

A set C of a topological space $\{X; \mathcal{U}\}$ is closed if its complement $C^c = X - C$ is open.

The intersection of any collection of closed sets $\{C_{\alpha} : \alpha \in I\}$ (for some index set I) is closed by axiom (ii) and DeMorgan's Law,

$$X - \bigcap_{\alpha \in I} C_{\alpha} = X \cap \left(\bigcap_{\alpha \in I} C_{\alpha}\right)^{c} = X \cap \left(\bigcup_{\alpha \in I} C_{\alpha}^{c}\right) = \bigcup_{\alpha \in I} X \cap C_{\alpha}^{c} = \bigcup_{\alpha \in I} (X - C_{\alpha}),$$

while the union of finitely many closed sets C_1, \ldots, C_n is closed by axiom (iii) and De-Morgan's Law,

$$X - (C_1 \cup \cdots \cup C_n) = (X - C_1) \cap \cdots \cap (X - C_n).$$

No matter the topology chosen for X, the sets \emptyset and X are both open and closed (or clopen) by axiom (i).

An **open neighbourhood** (open nhbd for short) of a subset A of X is any open set \mathcal{O} for which $A \subset \mathcal{O}$.

A open nbhd of a singleton or point $x \in X$ is any open set \mathcal{O} for which $x \in \mathcal{O}$.

Fact: a subset \mathcal{O} of X is open if and only if \mathcal{O} is an open nhbd of any of its points.

A point $x \in A$ is an **interior point of** A if there is an open set \mathcal{O} such that

$$x \in \mathcal{O} \subset A.$$

The **interior** of a set A is the union of all the interior points of A, and is denoted by A.

Fact: a set A is open if and only if A = A.

A point $x \in X$ is a **point of closure** of a set A if every open nbhd of x intersects A.

The **closure** of A is the set of all the points of closure of A, and is denoted by \overline{A} .

Fact: a set A is closed if and only if $\overline{A} = A$ if and only if A is the intersection of all closed sets containing A.

A point $x \in X$ is a **cluster point** of a sequence $\{x_n\}$ in X if every open set containing x contains x_n for infinitely many n.

A sequence $\{x_n\}$ in X converges to $x \in X$ if for every open set \mathcal{O} containing x there exists an integer $m(\mathcal{O})$ (depending on \mathcal{O}) such that $x_n \in \mathcal{O}$ for all $n \geq m(\mathcal{O})$.

A set *B* is **dense** in a set *A* if $A \subset \overline{B}$ (for example, if A = (0, 1) and $B = \mathbb{Q}$, we have $A \subset \overline{B}$); if $B \subset A$ and *B* is dense in *A*, then $\overline{A} = \overline{B}$; and *B* is dense in *X* if $\overline{B} = X$.

A topological space $\{X; \mathcal{U}\}$ is **separable** if it contains a countable dense subset.

For topological spaces $\{X; \mathcal{U}\}$ and $\{Y; \mathcal{V}\}$, a function $f : X \to Y$ is **continuous at** $x \in X$ if for each $V \in \mathcal{V}$ containing f(x) there exists $\mathcal{O} \in \mathcal{U}$ containing x such that $f(\mathcal{O}) \subset V$.

A function $f: X \to Y$ is **continuous on** X if it is continuous at each $x \in X$.

Fact: $f: X \to Y$ is continuous if and only if for every $V \in \mathcal{V}$, the preimage $f^{-1}(V) = \{x \in X : f(x) \in V\}$ belongs to \mathcal{U} (i.e., the preimage of any open set is open), if and only if the preimage of any closed set is closed.

A function from one topological space $\{X; \mathcal{U}\}$ to another $\{Y, \mathcal{V}\}$ is a **homeomorphism** if f is bijective and continuous, and f^{-1} is continuous.

4: Bases. A collection of open sets \mathcal{B} is a base for the topology of $\{X; \mathcal{U}\}$ if for every $\mathcal{O} \in \mathcal{U}$ and every $x \in \mathcal{O}$ there exists $B \in \mathcal{B}$ such that $x \in B \subset \mathcal{O}$.

A collection \mathcal{B}_x of open sets is a **base at** $x \in X$ if for every $\mathcal{O} \in \mathcal{U}$ containing x, there exists $B \in \mathcal{B}_x$ such that $x \in B \subset \mathcal{O}$.

Fact: \mathcal{B} is a base for the topology of $\{X; \mathcal{U}\}$ if and only if it is a base for each $x \in X$.

Fact: given a base \mathcal{B} for a topology \mathcal{U} on X, a set \mathcal{O} is open in X if and only if for each $x \in \mathcal{O}$ there is $B \in \mathcal{B}$ such that $x \in B \subset \mathcal{O}$.

Proposition 4.1. A collection \mathcal{B} is a base for a topology \mathcal{U} on a set X if and only if

- (i) every $x \in X$ belongs to some $B \in \mathcal{B}$, and
- (ii) for every $B_1, B_2 \in \mathcal{B}$, and every $x \in B_1 \cap B_2$, there is $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

See the Appendix of this Lecture Note for a proof.

Example. The standard topology on \mathbb{R}^N has a base the collection \mathcal{B} of open balls with centers in \mathbb{Q}^N and radii in \mathbb{Q}^+ (the positive rational numbers).

The collection of open sets in \mathbb{R}^N is uncountable while the set \mathcal{B} is countable.

Appendix. Proof of Proposition 4.1. Suppose that a collection \mathcal{B} is a base for a topology \mathcal{U} on X.

Since $X \in \mathcal{U}$, we have for each $x \in X$ the existence of $B \in \mathcal{B}$ such that $x \in B \subset X$.

Since every element of \mathcal{B} is an open set, we have for $B_1, B_2 \in \mathcal{B}$ that $B_1 \cap B_2$ is open and nonempty, so there is $B_3 \in \mathcal{B}$ such that $B_3 \subset B_1 \cap B_2$.

Now for a given collection \mathcal{B} satisfying (i) and (ii), we construct a collection of sets \mathcal{U} in X that satisfies (a) $\emptyset, X \in \mathcal{U}$, (b) a union of any collection of sets in \mathcal{U} is in \mathcal{U} , and (c) the intersection of finitely many elements of \mathcal{U} is in \mathcal{U} .

Let \mathcal{U} consist of \emptyset and all nonempty subsets \mathcal{O} of X such that for every $x \in \mathcal{O}$ there exists $B \in \mathcal{B}$ such that $x \in B \subset \mathcal{O}$.

Since for each $x \in X$, there is $B \in \mathcal{B}$ such that $x \in B$ by (i), we have $x \in B \subset X$ and so $X \in \mathcal{U}$.

For a collection $\{\mathcal{O}_{\alpha} : \alpha \in I\}$ of sets in \mathcal{U} , we have for each \mathcal{O}_{α} and any $x \in \mathcal{O}_{\alpha}$, the existence of $B_x \in \mathcal{B}$ such that $x \in B_x \subset \mathcal{O}_{\alpha}$.

It follows that for any $x \in \bigcup_{\alpha \in I} \mathcal{O}_{\alpha}$, that there is at least one choice of $\beta \in I$ such that $x \in \mathcal{O}_{\beta}$, and hence $x \in B_x \subset \mathcal{O}_{\beta} \subset \bigcup_{\alpha \in I} \mathcal{O}_{\alpha}$.

Thus $\cup_{\alpha \in I} \mathcal{O}_{\alpha} \in \mathcal{U}$.

Lastly, let \mathcal{O}_1 and \mathcal{O}_2 be two elements of \mathcal{U} with $\mathcal{O}_1 \cap \mathcal{O}_2 \neq \emptyset$.

For $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, we have $x \in \mathcal{O}_1$ and $x \in \mathcal{O}_2$, so that by (i) there are $B_1, B_2 \in \mathcal{B}$ such that $x \in B_1 \subset \mathcal{O}_1$ and $x \in B_2 \subset \mathcal{O}_2$.

This implies that $x \in B_1 \cap B_2$, so that by (ii) there is $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$. Since $B_1 \cap B_2 \subset \mathcal{O}_1 \cap \mathcal{O}_2$, we obtain $x \in B_3 \subset \mathcal{O}_1 \cap \mathcal{O}_2$.

By induction, the intersection of finitely many elements of \mathcal{U} belongs to \mathcal{U} .