
Math 541 Lecture #1
I.1: Topological Spaces

I.4: Bases, axioms of countability, and product topologies, Part I

1: Topological Spaces. We review the basic definitions and concepts of topological
spaces that we will need later for infinite sets of functions.

As a visual keep in mind the familiar topological notion of open set in RN .

A collection of subsets U of a set X defines a topology on X if the following three
axioms hold:

(i) the empty set ∅ and X belong to U ,

(ii) the union of any collection of sets in U belongs to U , and

(iii) the intersection of finitely many elements of U belongs to U .

The weakest or coarsest or trivial topology on X is U = {∅, X}, while the strongest
or finest or discrete topology on X is U = P(X) = 2X (the power set of X).

A topological space is a pair {X;U} where U is a topology on X.

A set O of a topological space {X;U} is open if O ∈ U .

Any union of open sets is open by axiom (ii).

A set C of a topological space {X;U} is closed if its complement Cc = X − C is open.

The intersection of any collection of closed sets {Cα : α ∈ I} (for some index set I) is
closed by axiom (ii) and DeMorgan’s Law,
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while the union of finitely many closed sets C1, . . . , Cn is closed by axiom (iii) and De-
Morgan’s Law,

X − (C1 ∪ · · · ∪ Cn) = (X − C1) ∩ · · · ∩ (X − Cn).

No matter the topology chosen for X, the sets ∅ and X are both open and closed (or
clopen) by axiom (i).

An open neighbourhood (open nhbd for short) of a subset A of X is any open set O
for which A ⊂ O.

A open nbhd of a singleton or point x ∈ X is any open set O for which x ∈ O.

Fact: a subset O of X is open if and only if O is an open nhbd of any of its points.

A point x ∈ A is an interior point of A if there is an open set O such that

x ∈ O ⊂ A.

The interior of a set A is the union of all the interior points of A, and is denoted by Å.



Fact: a set A is open if and only if A = Å.

A point x ∈ X is a point of closure of a set A if every open nbhd of x intersects A.

The closure of A is the set of all the points of closure of A, and is denoted by A.

Fact: a set A is closed if and only if A = A if and only if A is the intersection of all closed
sets containing A.

A point x ∈ X is a cluster point of a sequence {xn} in X if every open set containing
x contains xn for infinitely many n.

A sequence {xn} in X converges to x ∈ X if for every open set O containing x there
exists an integer m(O) (depending on O) such that xn ∈ O for all n ≥ m(O).

A set B is dense in a set A if A ⊂ B (for example, if A = (0, 1) and B = Q, we have
A ⊂ B); if B ⊂ A and B is dense in A, then A = B; and B is dense in X if B = X.

A topological space {X;U} is separable if it contains a countable dense subset.

For topological spaces {X;U} and {Y ;V}, a function f : X → Y is continuous at
x ∈ X if for each V ∈ V containing f(x) there exists O ∈ U containing x such that
f(O) ⊂ V .

A function f : X → Y is continuous on X if it is continuous at each x ∈ X.

Fact: f : X → Y is continuous if and only if for every V ∈ V , the preimage f−1(V ) =
{x ∈ X : f(x) ∈ V } belongs to U (i.e., the preimage of any open set is open), if and only
if the preimage of any closed set is closed.

A function from one topological space {X;U} to another {Y,V} is a homeomorphism
if f is bijective and continuous, and f−1 is continuous.

4: Bases. A collection of open sets B is a base for the topology of {X;U} if for every
O ∈ U and every x ∈ O there exists B ∈ B such that x ∈ B ⊂ O.

A collection Bx of open sets is a base at x ∈ X if for every O ∈ U containing x, there
exists B ∈ Bx such that x ∈ B ⊂ O.

Fact: B is a base for the topology of {X;U} if and only if it is a base for each x ∈ X.

Fact: given a base B for a topology U on X, a set O is open in X if and only if for each
x ∈ O there is B ∈ B such that x ∈ B ⊂ O.

Proposition 4.1. A collection B is a base for a topology U on a set X if and only if

(i) every x ∈ X belongs to some B ∈ B, and

(ii) for every B1, B2 ∈ B, and every x ∈ B1 ∩ B2, there is B3 ∈ B such that x ∈ B3 ⊂
B1 ∩B2.

See the Appendix of this Lecture Note for a proof.

Example. The standard topology on RN has a base the collection B of open balls with
centers in QN and radii in Q+ (the positive rational numbers).

The collection of open sets in RN is uncountable while the set B is countable.



Appendix. Proof of Proposition 4.1. Suppose that a collection B is a base for a topology
U on X.

Since X ∈ U , we have for each x ∈ X the existence of B ∈ B such that x ∈ B ⊂ X.

Since every element of B is an open set, we have for B1, B2 ∈ B that B1∩B2 is open and
nonempty, so there is B3 ∈ B such that B3 ⊂ B1 ∩B2.

Now for a given collection B satisfying (i) and (ii), we construct a collection of sets U in
X that satisfies (a) ∅, X ∈ U , (b) a union of any collection of sets in U is in U , and (c)
the intersection of finitely many elements of U is in U .

Let U consist of ∅ and all nonempty subsets O of X such that for every x ∈ O there
exists B ∈ B such that x ∈ B ⊂ O.

Since for each x ∈ X, there is B ∈ B such that x ∈ B by (i), we have x ∈ B ⊂ X and so
X ∈ U .

For a collection {Oα : α ∈ I} of sets in U , we have for each Oα and any x ∈ Oα, the
existence of Bx ∈ B such that x ∈ Bx ⊂ Oα.

It follows that for any x ∈ ∪α∈IOα, that there is at least one choice of β ∈ I such that
x ∈ Oβ, and hence x ∈ Bx ⊂ Oβ ⊂ ∪α∈IOα.

Thus ∪α∈IOα ∈ U .

Lastly, let O1 and O2 be two elements of U with O1 ∩ O2 6= ∅.
For x ∈ O1 ∩ O2, we have x ∈ O1 and x ∈ O2, so that by (i) there are B1, B2 ∈ B such
that x ∈ B1 ⊂ O1 and x ∈ B2 ⊂ O2.

This implies that x ∈ B1∩B2, so that by (ii) there is B3 ∈ B such that x ∈ B3 ⊂ B1∩B2.

Since B1 ∩B2 ⊂ O1 ∩ O2, we obtain x ∈ B3 ⊂ O1 ∩ O2.

By induction, the intersection of finitely many elements of U belongs to U . �


