Math 541 Lecture #2
[.4: Bases, axioms of countability, and product topologies, Part II
[.9: Vector Spaces
[.10: Topological Vector Spaces
[.13: Metric Spaces, Part I

4: Axioms of Countability. A topological space {X;U} satisfies the first axiom of
countability if each point x € X has a countable base.

A topological space {X;U} satisfies the second axiom of countability if there exists
a countable base for its topology.

Proposition 4.2. Every topological space satisfying the second axiom of countability is
separable (i.e., has a countable dense subset).

Proof. Let B = {B; : i € N} be a countable base for the topology of {X;U}.

For each i € N, select an element z; € B;.

We show that the set C' = {x; : i € N} is dense in X i.e., that (X =)X = C.

For an arbitrary z € X, let O, be an open nbhd of z.

Since B is a base for the topology, there is 7 € N such that x € B; C O,.

Since z; € Bj, we have that every open nbhd of z intersects C.

With x being arbitrary, we have that the closure of C'is X. OJ

4.1: Product Topologies. For two topological spaces {X;,U;}, i = 1,2, the product
topology U; x Us on the Cartesian product X; x X, is constructed by considering the
set B of all products Oy x Oy for O; € U;, i =1, 2.

The sets O; x Oy are called open rectangles in product topology.
Fact: the collection B of open rectangles forms a base for a topology U; x Us on X7 x Xj.

For the product topological space {X; x Xo;U; X Uy}, the projection maps
Uy X1 X X2 — Xj7 (371,.%’2) — Tj, j = 1,2,
are continuous because 7, (0) = O x Xy € Uy x Uy for all O € U, (with a similar

statement holding for ).

Fact: the topology U; x U, is the weakest topology on X; x X, for which the projection
maps m; are continuous.

9.1: Convex Sets (in Real Vector Spaces). A convex combination of two vectors
x and y in a real vector space X is a vector of the form

tx + (1 —t)y, where t € [0, 1].

As t varies over [0, 1], the convex combination tx + (1 — t)y traces a line segment whose
extremities are x and y.



A convex combination of n vectors 1, ..., x, is a vector of the form
n n
E o;r;, where a; > 0, E a=1.
i=1 i=1

A subset A of X is convex if for each pair of vectors z,y € A, the elements tx + (1 —1)y
belong to A for all ¢ € [0, 1].

10: Topological Vector Spaces. A vector space X over R equipped with a topology
U is a topological vector space if the vector space operations of addition and scalar

multiplication,
+: X xX =X, :RxX =X,

are continuous with respect to the product topologies on X x X and R x X respectively.

For a fixed zy € X, the translation by xy on X is the function
Tyo(x) =24 20, v € X.
For a fixed A € R — {0}, the dilatation by A on X is the function

Dy(z) = Az, v € X.

If {X,U} is a topological vector space over R, then the maps T, and D) are homeomor-
phisms from {X;U} to itself.

In particular, if O is open in X, then so is T,,(0) = xo + O for all x5 € X, and the
topology U on X is called translation invariant.

For a topological vector space { X;U}, if Bg is a base at the zero vector ©, then for any
fixed x € X, the collection B, = x + Bg is a base at the element z.

This means that the base Bg at © determines the topology U on X.
If all the elements of Bg are convex, the topology of {X;U} is called locally convex.

13: Metric Spaces. A metric on a nonempty set X is a function d : X x X — R that
satisfies

y) > 0 for all (z,y) € X x X (nonnegativity),

ii) d(x,y) =0 if and only if x = y (zero property),

(111) d(z,y) = d(y,x) for all (z,y) € X x X (symmetric property), and
iv) d(z,y) < d(x,z) +d(z,y) for all x,y,z € X (triangle inequality).

A metric space is a pair {X;d} where d is a metric on X.

Define the open ball centered at x € X with radius p > 0 to be the set
By(z) ={y € X : d(z,y) < p}.

Homework Problem 2A. Prove that the collection B of open balls B,(x) in a metric
space satisfies the two conditions of Proposition 4.1.



Then the collection B generates a topology U on {X;d}, called the metric topology,
with B as a base.

A set O C X is open in the metric topology if for every x € O there is B € B such that
re BCO.

A set E C X is closed if X — F is open.
A point = € X is a point of closure for a set E if B.(z) N E # () for all € > 0.
Fact: a set F is closed if and only if it coincides with the set all of its points of closure.

Homework Problem 2B. Prove that each singleton set {z} is closed in the metric
topology.

A point z € X is a cluster point of a sequence {z,} in X if for all € > 0 the open ball
B (z) contains infinitely many terms of {x,}.

A sequence {z,} converges to a point x € X if for every ¢ > 0 there exists n. € N such
that d(x,x,) < € for all n > n..

A sequence {z,} is Cauchy in X if for all ¢ > 0 there exists n. € N such that d(z,, z,,) <
€ for all n,m > n,.

A metric space {X;d} is complete if every Cauchy sequence in X converges to an
element of X.

For two metric spaces {X;d} and {Y;n}, a function f : X — Y is continuous at
a point x € X if for every e there exists 6 > 0 (depending on x and €) such that

n{f(x), f(y)} < e whenever d(z,y) < J.

A function f: X — Y is continuous on X if it is continuous at every x € X.



