
Math 541 Lecture #2
I.4: Bases, axioms of countability, and product topologies, Part II

I.9: Vector Spaces
I.10: Topological Vector Spaces

I.13: Metric Spaces, Part I

4: Axioms of Countability. A topological space {X;U} satisfies the first axiom of
countability if each point x ∈ X has a countable base.

A topological space {X;U} satisfies the second axiom of countability if there exists
a countable base for its topology.

Proposition 4.2. Every topological space satisfying the second axiom of countability is
separable (i.e., has a countable dense subset).

Proof. Let B = {Bi : i ∈ N} be a countable base for the topology of {X;U}.
For each i ∈ N, select an element xi ∈ Bi.

We show that the set C = {xi : i ∈ N} is dense in X, i.e., that (X =)X = C.

For an arbitrary x ∈ X, let Ox be an open nbhd of x.

Since B is a base for the topology, there is j ∈ N such that x ∈ Bj ⊂ Ox.
Since xj ∈ Bj, we have that every open nbhd of x intersects C.

With x being arbitrary, we have that the closure of C is X. �

4.1: Product Topologies. For two topological spaces {Xi,Ui}, i = 1, 2, the product
topology U1 × U2 on the Cartesian product X1 ×X2 is constructed by considering the
set B of all products O1 ×O2 for Oi ∈ Ui, i = 1, 2.

The sets O1 ×O2 are called open rectangles in product topology.

Fact: the collection B of open rectangles forms a base for a topology U1×U2 on X1×X2.

For the product topological space {X1 ×X2;U1 × U2}, the projection maps

πj : X1 ×X2 → Xj, (x1, x2)→ xj, j = 1, 2,

are continuous because π−1
1 (O) = O × X2 ∈ U1 × U2 for all O ∈ U1 (with a similar

statement holding for π2).

Fact: the topology U1 ×U2 is the weakest topology on X1 ×X2 for which the projection
maps πj are continuous.

9.1: Convex Sets (in Real Vector Spaces). A convex combination of two vectors
x and y in a real vector space X is a vector of the form

tx+ (1− t)y, where t ∈ [0, 1].

As t varies over [0, 1], the convex combination tx+ (1− t)y traces a line segment whose
extremities are x and y.



A convex combination of n vectors x1, . . . , xn is a vector of the form

n∑
i=1

αixi, where αi ≥ 0,
n∑
i=1

α = 1.

A subset A of X is convex if for each pair of vectors x, y ∈ A, the elements tx+ (1− t)y
belong to A for all t ∈ [0, 1].

10: Topological Vector Spaces. A vector space X over R equipped with a topology
U is a topological vector space if the vector space operations of addition and scalar
multiplication,

+ : X ×X → X, · : R×X → X,

are continuous with respect to the product topologies on X ×X and R×X respectively.

For a fixed x0 ∈ X, the translation by x0 on X is the function

Tx0(x) = x+ x0, x ∈ X.

For a fixed λ ∈ R− {0}, the dilatation by λ on X is the function

Dλ(x) = λx, x ∈ X.

If {X,U} is a topological vector space over R, then the maps Tx0 and Dλ are homeomor-
phisms from {X;U} to itself.

In particular, if O is open in X, then so is Tx0(O) = x0 + O for all x0 ∈ X, and the
topology U on X is called translation invariant.

For a topological vector space {X;U}, if BΘ is a base at the zero vector Θ, then for any
fixed x ∈ X, the collection Bx = x+ BΘ is a base at the element x.

This means that the base BΘ at Θ determines the topology U on X.

If all the elements of BΘ are convex, the topology of {X;U} is called locally convex.

13: Metric Spaces. A metric on a nonempty set X is a function d : X ×X → R that
satisfies

(i) d(x, y) ≥ 0 for all (x, y) ∈ X ×X (nonnegativity),

(ii) d(x, y) = 0 if and only if x = y (zero property),

(iii) d(x, y) = d(y, x) for all (x, y) ∈ X ×X (symmetric property), and

(iv) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (triangle inequality).

A metric space is a pair {X; d} where d is a metric on X.

Define the open ball centered at x ∈ X with radius ρ > 0 to be the set

Bρ(x) = {y ∈ X : d(x, y) < ρ}.

Homework Problem 2A. Prove that the collection B of open balls Bρ(x) in a metric
space satisfies the two conditions of Proposition 4.1.



Then the collection B generates a topology U on {X; d}, called the metric topology,
with B as a base.

A set O ⊂ X is open in the metric topology if for every x ∈ O there is B ∈ B such that
x ∈ B ⊂ O.

A set E ⊂ X is closed if X − E is open.

A point x ∈ X is a point of closure for a set E if Bε(x) ∩ E 6= ∅ for all ε > 0.

Fact: a set E is closed if and only if it coincides with the set all of its points of closure.

Homework Problem 2B. Prove that each singleton set {x} is closed in the metric
topology.

A point x ∈ X is a cluster point of a sequence {xn} in X if for all ε > 0 the open ball
Bε(x) contains infinitely many terms of {xn}.
A sequence {xn} converges to a point x ∈ X if for every ε > 0 there exists nε ∈ N such
that d(x, xn) < ε for all n ≥ nε.

A sequence {xn} is Cauchy in X if for all ε > 0 there exists nε ∈ N such that d(xn, xm) <
ε for all n,m ≥ nε.

A metric space {X; d} is complete if every Cauchy sequence in X converges to an
element of X.

For two metric spaces {X; d} and {Y ; η}, a function f : X → Y is continuous at
a point x ∈ X if for every ε there exists δ > 0 (depending on x and ε) such that
η{f(x), f(y)} < ε whenever d(x, y) < δ.

A function f : X → Y is continuous on X if it is continuous at every x ∈ X.


