Math 541 Lecture #2 I.4: Bases, axioms of countability, and product topologies, Part II I.9: Vector Spaces I.10: Topological Vector Spaces I.13: Metric Spaces, Part I

4: Axioms of Countability. A topological space $\{X; \mathcal{U}\}$ satisfies the first axiom of countability if each point $x \in X$ has a countable base.

A topological space $\{X; \mathcal{U}\}$ satisfies the **second axiom of countability** if there exists a countable base for its topology.

Proposition 4.2. Every topological space satisfying the second axiom of countability is separable (i.e., has a countable dense subset).

Proof. Let $\mathcal{B} = \{B_i : i \in \mathbb{N}\}$ be a countable base for the topology of $\{X; \mathcal{U}\}$.

For each $i \in \mathbb{N}$, select an element $x_i \in B_i$.

We show that the set $C = \{x_i : i \in \mathbb{N}\}$ is dense in X, i.e., that $(X =)\overline{X} = \overline{C}$.

For an arbitrary $x \in X$, let \mathcal{O}_x be an open nbhd of x.

Since \mathcal{B} is a base for the topology, there is $j \in \mathbb{N}$ such that $x \in B_j \subset \mathcal{O}_x$.

Since $x_j \in B_j$, we have that every open nbhd of x intersects C.

With x being arbitrary, we have that the closure of C is X.

4.1: Product Topologies. For two topological spaces $\{X_i, \mathcal{U}_i\}$, i = 1, 2, the **product topology** $\mathcal{U}_1 \times \mathcal{U}_2$ on the Cartesian product $X_1 \times X_2$ is constructed by considering the set \mathcal{B} of all products $\mathcal{O}_1 \times \mathcal{O}_2$ for $\mathcal{O}_i \in \mathcal{U}_i$, i = 1, 2.

The sets $\mathcal{O}_1 \times \mathcal{O}_2$ are called **open rectangles** in product topology.

Fact: the collection \mathcal{B} of open rectangles forms a base for a topology $\mathcal{U}_1 \times \mathcal{U}_2$ on $X_1 \times X_2$.

For the product topological space $\{X_1 \times X_2; \mathcal{U}_1 \times \mathcal{U}_2\}$, the projection maps

 $\pi_j: X_1 \times X_2 \to X_j, \ (x_1, x_2) \to x_j, \ j = 1, 2,$

are continuous because $\pi_1^{-1}(\mathcal{O}) = \mathcal{O} \times X_2 \in \mathcal{U}_1 \times \mathcal{U}_2$ for all $\mathcal{O} \in \mathcal{U}_1$ (with a similar statement holding for π_2).

Fact: the topology $\mathcal{U}_1 \times \mathcal{U}_2$ is the weakest topology on $X_1 \times X_2$ for which the projection maps π_j are continuous.

9.1: Convex Sets (in Real Vector Spaces). A convex combination of two vectors x and y in a real vector space X is a vector of the form

$$tx + (1-t)y$$
, where $t \in [0, 1]$.

As t varies over [0, 1], the convex combination tx + (1 - t)y traces a line segment whose extremities are x and y.

A convex combination of n vectors x_1, \ldots, x_n is a vector of the form

$$\sum_{i=1}^{n} \alpha_i x_i, \text{ where } \alpha_i \ge 0, \sum_{i=1}^{n} \alpha = 1.$$

A subset A of X is **convex** if for each pair of vectors $x, y \in A$, the elements tx + (1-t)y belong to A for all $t \in [0, 1]$.

10: Topological Vector Spaces. A vector space X over \mathbb{R} equipped with a topology \mathcal{U} is a topological vector space if the vector space operations of addition and scalar multiplication,

$$+: X \times X \to X, \ \cdot: \mathbb{R} \times X \to X,$$

are continuous with respect to the product topologies on $X \times X$ and $\mathbb{R} \times X$ respectively. For a fixed $x_0 \in X$, the **translation by** x_0 on X is the function

$$T_{x_0}(x) = x + x_0, \ x \in X$$

For a fixed $\lambda \in \mathbb{R} - \{0\}$, the **dilatation by** λ on X is the function

$$D_{\lambda}(x) = \lambda x, \ x \in X.$$

If $\{X, \mathcal{U}\}$ is a topological vector space over \mathbb{R} , then the maps T_{x_0} and D_{λ} are homeomorphisms from $\{X; \mathcal{U}\}$ to itself.

In particular, if \mathcal{O} is open in X, then so is $T_{x_0}(\mathcal{O}) = x_0 + \mathcal{O}$ for all $x_0 \in X$, and the topology \mathcal{U} on X is called **translation invariant**.

For a topological vector space $\{X; \mathcal{U}\}$, if \mathcal{B}_{Θ} is a base at the zero vector Θ , then for any fixed $x \in X$, the collection $\mathcal{B}_x = x + \mathcal{B}_{\Theta}$ is a base at the element x.

This means that the base \mathcal{B}_{Θ} at Θ determines the topology \mathcal{U} on X.

If all the elements of \mathcal{B}_{Θ} are convex, the topology of $\{X; \mathcal{U}\}$ is called **locally convex**.

13: Metric Spaces. A metric on a nonempty set X is a function $d: X \times X \to \mathbb{R}$ that satisfies

- (i) $d(x,y) \ge 0$ for all $(x,y) \in X \times X$ (nonnegativity),
- (ii) d(x, y) = 0 if and only if x = y (zero property),
- (iii) d(x,y) = d(y,x) for all $(x,y) \in X \times X$ (symmetric property), and
- (iv) $d(x,y) \le d(x,z) + d(z,y)$ for all $x, y, z \in X$ (triangle inequality).

A metric space is a pair $\{X; d\}$ where d is a metric on X.

Define the **open ball centered at** $x \in X$ with radius $\rho > 0$ to be the set

$$B_{\rho}(x) = \{ y \in X : d(x, y) < \rho \}.$$

Homework Problem 2A. Prove that the collection \mathcal{B} of open balls $B_{\rho}(x)$ in a metric space satisfies the two conditions of Proposition 4.1.

Then the collection \mathcal{B} generates a topology \mathcal{U} on $\{X; d\}$, called the **metric topology**, with \mathcal{B} as a base.

A set $\mathcal{O} \subset X$ is **open** in the metric topology if for every $x \in \mathcal{O}$ there is $B \in \mathcal{B}$ such that $x \in B \subset \mathcal{O}$.

A set $E \subset X$ is **closed** if X - E is open.

A point $x \in X$ is a **point of closure** for a set E if $B_{\epsilon}(x) \cap E \neq \emptyset$ for all $\epsilon > 0$.

Fact: a set E is **closed** if and only if it coincides with the set all of its points of closure.

Homework Problem 2B. Prove that each singleton set $\{x\}$ is closed in the metric topology.

A point $x \in X$ is a **cluster point** of a sequence $\{x_n\}$ in X if for all $\epsilon > 0$ the open ball $B_{\epsilon}(x)$ contains infinitely many terms of $\{x_n\}$.

A sequence $\{x_n\}$ converges to a point $x \in X$ if for every $\epsilon > 0$ there exists $n_{\epsilon} \in \mathbb{N}$ such that $d(x, x_n) < \epsilon$ for all $n \ge n_{\epsilon}$.

A sequence $\{x_n\}$ is **Cauchy** in X if for all $\epsilon > 0$ there exists $n_{\epsilon} \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ for all $n, m \ge n_{\epsilon}$.

A metric space $\{X; d\}$ is **complete** if every Cauchy sequence in X converges to an element of X.

For two metric spaces $\{X; d\}$ and $\{Y; \eta\}$, a function $f : X \to Y$ is **continuous at a point** $x \in X$ if for every ϵ there exists $\delta > 0$ (depending on x and ϵ) such that $\eta\{f(x), f(y)\} < \epsilon$ whenever $d(x, y) < \delta$.

A function $f: X \to Y$ is **continuous on** X if it is continuous at every $x \in X$.