
Math 541 Lecture #3
I.13: Metric Spaces, Part II

I.16: On the Structure of a Complete Metric Space

13.1: Separation and axioms of countability. Metric spaces enjoys many nice
properties.

Proposition 13.2. A metric space {X; d} is separable (i.e., has a countable dense
subset) if and only if it satisfies the second axiom of countability.

Proof. If the metric topology satisfies the second axiom of countability, then by Propo-
sition 4.2, it is separable.

So suppose that {X; d} is separable.

Then there is a countable dense subset A of X.

The collection of balls centered at points of A having rational radii forms a countable
base for the topology. �

16: On the structure of complete metric spaces. For a topological space {X;U},
a subset E of X is nowhere dense in X if E

c
= X −E is dense in X, i.e., if the closure

of X − E is X.

Proposition. Here are some basic facts about nowhere dense sets.

(i) If E is nowhere dense in X, then E is nowhere dense.

(ii) A closed set E is nowhere dense if and only if E does not contain any nonempty
open set.

(iii) If E is nowhere dense and O is nonempty and open, then O − E contains an
nonempty open set.

Proof. (i) If E is nowhere dense, then X − E is dense in X.

Since the closure of the closed set E is itself, then X − E = X − E is dense, so E is
nowhere dense.

(ii) For a closed set E, suppose that E is nowhere dense, so X − E is dense in X.

If E did contain an nonempty open set O, then X −O ⊃ X − E.

Any x ∈ O satisfies x 6∈ X − E because O ∩ (X − E) = ∅.
This contradiction implies that the closed E does not contain an nonempty open set.

Now suppose that closed E does not contain an nonempty open set.

If E = E were not nowhere dense, then X − E would not be dense, and so there would
be x ∈ X and an open O containing x such that O ∩ (X − E) = ∅.
This implies that O ⊂ E.

This contradiction implies that E is nowhere dense.

(iii) Suppose E is nowhere dense, and let O be any open set.

By part (i), the closed set E is nowhere dense.



The difference O−E is nonempty, because if it were not, then O ⊂ E which would imply
by part (ii) that E is not nowhere dense, a contradiction.

The nonempty O − E = O ∩ E
c

is open because it is the intersection of finitely many
open sets. �

A subset E of a topological space {X;U} is meager, or of first category, if it is the
countable union of nowhere dense sets.

The quintessential example of a meager set is Q as a subset of R.

A subset E is of second category if it is not of first category.

A subset E is residual or nonmeager if it is the complement of a set of first category.

The meager set Q with the standard Euclidean metric d(x, y) = |x− y| is not a complete
metric space. Its completion R (the set of all Cauchy sequences in Q modulo the equiv-
alence relation that two Cauchy sequences are equivalent if their difference converges to
0) is a complete metric space which is of second category and R−Q is nonmeager.

That a complete metric space is not meager is a consequence of Baire’s Category Theory.

Theorem 16.1 (Baire). A complete metric space is of second category.

Proof. Suppose otherwise that a complete metric space {X; d} is of first category.

Then there is a countable collection {En} of nowhere dense subset of X for which

X =
∞⋃
n=1

En.

For any fixed x0 ∈ X consider the open ball Br0(x0) for some r0 < 1.

Since E1 is nowhere dense, the difference Br0(x0)−E1 contains a nonempty open set, so
there x1 ∈ X and r1 > 0 such that Br1(x1) ⊂ Br0(x0)− E1.

Choosing r1 small enough, say r1 < 1/2, we obtain

Br1(x1) ⊂ Br0(x0)− E1 ⊂ Br0(x0).

Since E2 is nowhere dense, the difference Br1(x1) − E2 contains an open set, so there
x2 ∈ X and r2 > 0 such that Br2(x2) ⊂ Br1(x1)− E2.

Choosing r2 small enough, say r2 < 1/3, we obtain

Br2(x2) ⊂ Br1(x1)− E2 ⊂ Br1(x1).

Continuing this process gives sequences {xn} of points in X and radii {rn} with rn <
1/(n + 1) such that

Brn+1(xn+1) ⊂ Brn(xn) for all n,

and

Brn(xn)
⋂(

n⋃
j=1

Ej

)
= ∅ for all n.



The sequence {xn} is Cauchy because Brn+1(xn+1) ⊂ Brn(xn) for all n and rn → 0.

Since {X; d} is a complete metric space, the Cauchy sequence converges to some x ∈ X.

The limit x belongs to Brn(xn) for all n, for otherwise it could not be the limit.

Since Brn+1(xn+1) ⊂ Brn(xn)−En+1 for all n, the limit x does not belong to En for any
n.

Hence

x 6∈
∞⋃
n=1

En

which implies (because X ⊃ ∪En ⊃ ∪En = X, and hence ∪En = ∪En) that

x 6∈
∞⋃
n=1

En = X.

This is a contradiction. �

Corollary 16.2. A complete metric space does not contain nonempty open sets of first
category.

Homework problem 3A. Give a proof of Corollary 16.2 (in Ed.1, it is Corollary 16.1
in Ed.2).

Homework problem 3B. Give a proof of Proposition 16.2c (on p.63 in Ed.1; on p.65
in Ed.2).


